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Eviction policy performance
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A cache’s eviction policy significantly affects its performance.
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Eviction policy performance
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The optimal eviction policy depends on the cache’s configured size.
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Eviction policy performance
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The optimal eviction policy changes over time.
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The current state-of-the-art

• Most caches have limited support of eviction policies
• Memcached only supports LRU
• Redis supports LRU and LFU
• CacheLib supports many

• Eviction policies are typically statically configured
• Redis is the only cache that can switch dynamically

• Recent modeling methods identify the optimal policy online
• MiniSim (ATC’17), Kosmo (FAST’24)
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Many eviction policies exist

Policy “Rule-of-Thumb”
LRU High data locality

LFU Zipfian access patterns

FIFO Large inter-arrival gaps

MRU Cyclic or strict scanning access patterns

2Q Scanning access patterns

S3-FIFO “One-hit-wonders”

Arc Scanning access patterns
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How can we use MRCs?

Access stream

<K,V>

Kosmo/MiniSim
<K>

MRCs

Cache

Ideally, MRCs can be used to periodically reconfigure caches.
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The problem

• The optimal eviction policy for a workload changes over time

• We can generate policy-specific MRCs efficiently online

• We need a cache that can:

1. Continuously identify the optimal eviction policy

2. Switch to said policy at runtime without negatively

affecting performance
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The issue with switching eviction policies

Access stream

<K,V>

K V

Insert Evict

MRU LRU

Why can’t modern caches switch eviction policies at runtime?
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Evictions in Redis

Access stream

<K,V>
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Redis uses low-overhead approximations of eviction policies.
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Switching eviction policies in Redis

Access stream

<K,V>

K VMETA

LAT (16b)
FC (8b)

24b

5 random objects
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Evict LFU

Switching between simple eviction policies is trivial in Redis.
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Switching eviction policies in Redis
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Redis switching from LFU to LRU at 40 hours.
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PaperCache

• PaperCache design components:
• Maintain the full stack for the current eviction policy
• For each access, save the metadata to an append-only-log
• Maintain an approximate “MiniStack” in memory for each
configured eviction policy

• Each design component operates on a separate thread
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An overview of PaperCache

Access stream
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Evict
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PaperCache handles its eviction policy stack off the main thread.
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Switching eviction policies in PaperCache

Access stream

AOL

MRU LRU

MFU LFU

Release1

Reconstruct2

Replace3

The AOL is used to reconstruct eviction policy stacks at runtime.

How do we evict objects during a stack reconstruction?

17 / 34



MiniStacks

• Maintain an approximate stack

in memory for each policy

• MiniStacks perform evictions

during a policy switch

• MiniStacks are 1000× smaller

than FullStacks.
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PaperCache during a policy switch

LFU
reconstructing

Access stream

<K,V>

K V

0.1%Evict

<K>

AOL

LRU, LFU
MiniStacks

MiniStacks perform evictions during a policy switch.
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MiniStack efficacy duration

• MiniStacks may shrink over

time during evictions

• If a MiniStack is empty, resort

to random evictions

• How long can we depend on a

MiniStack for our evictions?
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MiniStack efficacy duration
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How long can a MiniStack be used before its performance degrades?
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MiniStack efficacy duration
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How long can a MiniStack be used before its performance degrades?
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Switching eviction policies in PaperCache
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PaperCache switching from LFU to LRU at 40 hours.
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PaperCache memory overhead

1,000 10,000 100,000 1,000,000

Redis v8.0.1 15MiB 43MiB 176MiB 270MiB

PaperCache 12MiB 53MiB 195MiB 459MiB

−20% +23.3% +10.8% +70%

PaperCache has higher memory overhead than Redis.
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PaperCache latency and CPU usage

p99 (µs) p99.9 (µs) p99.99 (µs)
GET SET GET SET GET SET

Redis v8.0.1 116 595 298 1,327 600 1,889

PaperCache 66 523 177 806 417 1,070

−43.1% −12.1% −40.6% −39.3% −30.5% −43.4%
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How do we know when to switch eviction policies?
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Leveraging MiniStacks for miss ratio reporting

• MiniStacks used in MiniSim to

approximate miss ratios

• We can leverage MiniStacks to

track miss ratios

• No need to generate full MRCs
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Is this really worthwhile?
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Auto-switching eviction policies in PaperCache
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Instances where each PaperCache has the lowest miss ratio.
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Auto-switching eviction policies in PaperCache
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How does the workload’s cardinality affect the optimal miss ratio?
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Auto-switching eviction policies in PaperCache
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How does the workload’s Zipfian behavior affect the optimal miss ratio?
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Auto-switching eviction policies in PaperCache
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PaperCache: Performance benefits
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How much can PaperCache lower the miss ratio?
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Conclusion

• The optimal eviction policy of a workload changes over time

• In-memory caches lack the ability to adapt to these changes

• PaperCache can switch between any eviction policy

• PaperCache unlocks eviction policy research directions
• Targeted eviction policies

• https://papercache.io
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