
RingSampler: GNN Sampling on
Large-Scale Graphs with io_uring

 Qixuan (Talia) Chen, Yuhang Song, Melissa Martinez, Vasiliki Kalavri

Boston University

Graph Neural Networks (GNNs)
Graph Neural Networks (GNNs) are powerful models in graph learning that capture relationships and

dependencies between entities in a network.

2

GNN Sampling
Training on the full graph can be computationally intensive and memory-heavy, so GNNs often
sample a subset of the original graph that retains its key features and structure.

3

GraphSAGE Sampling
For each target node (i.e., a node to be trained), GraphSAGE samples a fixed number of neighbors
(fanout) at each layer to construct the computation graph.

4

GraphSAGE 2 layer sampling

Epoch is split into
mini-batches to efficiently
process large datasets

layer 1: fanout = 3

layer 2: fanout = 2

target node

GNN Sampling is a Critical Bottleneck

Neighborhood sampling can consume 50–90% of total training time

— gSampler (OSDI '23), GIDS (ICDE '23), Ginex (OSDI '22), NextDoor (VLDB '21)

5

How to support larger-than memory graphs?

Datasets #Nodes #Edges Size

Papers100M 111M 1.62B 70GB

Hyperlink 3.5B 128B 3.4TB

Facebook 1.4B 1T 8.5TB

Graph size may exceed
main memory

6

Related Work

System Type CPU-based GPU-based SSD-based

Sampling Device CPU GPU SSD

Graph Stored In Disk(SSD) CPU/GPU SSD

Examples MariusGNN (EuroSys ‘23)
Ginex (EuroSys ‘21)

gSampler (SOSP ‘23)
NextDoor (EuroSys ‘21)

FlashGNN (HPCA ‘24)
In situ SmartSSD (DaMoN ’24)

Advantages Able to process
larger-than-memory graph

Leverage high computational
power of GPUs

Avoid data movement between
storage and sampling device

Limitations - High data movement overhead
between SSD and main memory
- Low computation power
comparing to GPU-based

- Constrained GPU memory
- Sampling competes with other
tasks for GPU-resources
- High computation Cost
- Underutilized CPU resources

- Low data transfer bandwidth
- Limited adoption due to
hardware customizations

7

Leverage io_uring, a modern storage API, and
high-bandwidth SSDs to perform sampling on

larger-than-memory graphs in CPU

Key idea behind RingSampler

8

Why io_uring

9

libaio io_uring SPDK

Performance
(Scalability, IOPS) ❌ ✅ ✅

CPU Usage ✅ ✅ ✅
Ease of Use ✅ ✅ ❌
Flexibility ❌ ✅ ❌
Compatibility ✅ ✅ ❌

Technical Challenges

- How to minimize data movement between SSD and CPU?

- How to integrate and adjust io_uring to GNN Sampling?

- How to implement multi-threading to maximize CPU utilization?

- How to take the advantage of asynchronous I/O?

?
10

Minimize data movement

Create two indexes to efficiently select neighbor offsets, allowing direct access to
sampled neighbors without loading all neighbors from disk.

target index

target
node

Main Memory

offset index

Disk

neighbors

11

[0,5)
1

io_uring: Batched I/O Requests and High Parallelism

Submitting multiple
requests in a single

system call

Each thread has its
own pair of ring

buffers

Parallel Design

Multi-threaded within mini-batches

13

Layer dependencies cause
blocking between threads

Parallel Design

Multi-threaded within mini-batches

Layer dependencies cause
blocking between threads

Equally distribute
mini-batches across threads to

process in parallel

Mini-batches are independent,
allowing sampling to proceed
without blocking until all are

complete.

14

Asynchronous Design

Synchronous

Asynchronous

15

Workflow

1

? ? ? ? ?

 0 1 2 3 4

2 3 6

 0 3 4

store

12

3

4

5

6

7

polling

Experimental Configuration

Machine

- Our setup includes an AMD EPYC 7713P 64C/128T CPU, 252GB DRAM, a 4TB
Samsung SmartSSD, and an NVIDIA A100 80GB GPU. The software environment
consists of Ubuntu 20.04, CUDA 12.1, PyTorch 2.3.1+cu121, and DGL v2.3.0+cu121.

Model Configuration

- 3-layer GraphSAGE model with a fanout of {20, 15, 10} and a mini-batch size of 1024.

Baselines

- DGL v2.3 (Deep Graph Library): In-memory CPU/GPU-based
- gSampler (SOSP ’23): In-memory GPU-based
- MariusGNN (EuroSys ’23): Out-of-memory CPU-based
- In-situ SmartSSD (DaMoN ’24): SSD-based

17

Datasets Used For Evaluation

ogbn-papers and Friendster: Fit in memory; used to evaluate in-memory sampling performance.

Yahoo and Synthetic: Extremely large graphs that do not fit in memory; used to test the system’s ability

to handle larger-than-memory graphs.

18

Dataset Vertices Edges Raw Size (GB) Bin Size (GB)

ogbn-papers 111M 1.6B 24.1 6.8

Friendster 65M 3.6B 30.1 13.5

Yahoo 1.4B 6.6B 66.9 35.3

Synthetic 134M 8.2B 140.8 31.7

Faster Than In-Memory CPU Systems, Competitive with
GPU Solutions

DGL-CPU: Graph stored and sampled
on CPU

DGL-GPU, gSampler-GPU: Graph
stored and sampled on GPU

DGL-UVA, gSampler-UVA: Graph
stored on CPU, sampled on GPU using
Unified Virtual Addressing (UVA) to
access data

19

Scales to Large Graphs and Outperforms Baseline

MariusGNN: Graph stored on SSD and
partially loaded into memory for
CPU-based sampling

SmartSSD: Graph stored and sampled
directly on SSD using FPGA

20

Low Memory Requirement for Large-scale Sampling

Only 4 GB of memory is needed to sample a billion-edge graph
(ogbn-papers) 21

Linear Scalability with No of Threads

Sampling run time decreases almost linearly with the number of threads, up
to the maximum number of available cores

22(ogbn-papers)

Low Latency Sampling for Real-Time GNN Inference

50% of sampling requests complete within 1.15s, and 90% within 2.07s

23

When RingSampler May Not Be the Best Choice

Large GPUs

- When GPU is large enough,
GPU-based sampling Systems
(gSampler) will be the best choice.

Small Graphs

- For graphs that fit entirely in memory,
the performance gains from
io_uring-based sampling are minimal

24

Future Work

End-to-end implementation

- Build an end-to-end system by integrating
RingSampler into GNN frameworks like DGL to
enable asynchronous CPU-based sampling alongside
GPU-based feature aggregation.

Exploiting caching strategy and sampling reuse

- Due to our parallel design, threads do not share
states, which can result in reading the same nodes
multiple times.

io_uring kernel polling mode

- Kernel polling mode auto-submits I/O when the
submission queue is full.

25

RingSampler

As graph data scales to
terabyte sizes,

out-of-memory challenges
arise, making efficient

sampling difficult

A CPU-based GNN system
leveraging io_uring for

asynchronous, batched I/O,
and multi-threading to

maximize CPU utilization

Efficiently handles
larger-than-memory graphs

and outperforms existing
baselines.

Contact:
Qixuan(Talia) Chen
taliac@bu.edu

26

RingSampler

https://github.com/CASP-Systems-BU/RingSampler

