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Graph Neural Networks (GNNs)
Graph Neural Networks (GNNs) are powerful models in graph learning that capture relationships and 

dependencies between entities in a network. 
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GNN Sampling 
Training on the full graph can be computationally intensive and memory-heavy, so GNNs often 
sample a subset of the original graph that retains its key features and structure.
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GraphSAGE Sampling
For each target node (i.e., a node to be trained), GraphSAGE samples a fixed number of neighbors 
(fanout) at each layer to construct the computation graph.
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GraphSAGE 2 layer sampling 

Epoch is split into 
mini-batches to efficiently 
process large datasets 

layer 1: fanout = 3

layer 2: fanout = 2

target node



GNN Sampling is a Critical Bottleneck 

Neighborhood sampling can consume 50–90% of total training time

— gSampler (OSDI '23), GIDS (ICDE '23), Ginex (OSDI '22), NextDoor (VLDB '21)
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How to support larger-than memory graphs?

Datasets #Nodes #Edges Size 

Papers100M 111M 1.62B 70GB

Hyperlink 3.5B 128B 3.4TB

Facebook 1.4B 1T 8.5TB

Graph size may exceed 
main memory
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Related Work

System Type CPU-based GPU-based SSD-based

Sampling Device CPU GPU SSD

Graph Stored In Disk(SSD) CPU/GPU SSD

Examples MariusGNN (EuroSys ‘23)
Ginex (EuroSys ‘21)

gSampler (SOSP ‘23)
NextDoor (EuroSys ‘21)

FlashGNN (HPCA ‘24)
In situ SmartSSD (DaMoN ’24)

Advantages Able to process 
larger-than-memory graph

Leverage high computational 
power of GPUs

Avoid data movement between 
storage and sampling device

Limitations - High data movement overhead 
between SSD and main memory
- Low computation power 
comparing to GPU-based

- Constrained GPU memory
- Sampling competes with other 
tasks for GPU-resources
- High computation Cost
- Underutilized CPU resources

- Low data transfer bandwidth
- Limited adoption due to 
hardware customizations
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Leverage io_uring, a modern storage API, and 
high-bandwidth SSDs to perform sampling on 

larger-than-memory graphs in CPU

Key idea behind RingSampler
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Why io_uring
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libaio io_uring SPDK

Performance 
(Scalability, IOPS) ❌ ✅ ✅

CPU Usage ✅ ✅ ✅
Ease of Use ✅ ✅ ❌
Flexibility ❌ ✅ ❌
Compatibility ✅ ✅ ❌



Technical Challenges

- How to minimize data movement between SSD and CPU?

- How to integrate and adjust io_uring to GNN Sampling? 

- How to implement multi-threading to maximize CPU utilization?

- How to take the advantage of asynchronous I/O?

?
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Minimize data movement

Create two indexes to efficiently select neighbor offsets, allowing direct access to 
sampled neighbors without loading all neighbors from disk.

target index

target 
node

Main Memory 

offset index

Disk

neighbors
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io_uring: Batched I/O Requests and High Parallelism

Submitting multiple 
requests in a single 

system call

Each thread has its 
own pair of ring 

buffers



Parallel Design 

Multi-threaded within mini-batches
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Layer dependencies cause 
blocking between threads



Parallel Design 

Multi-threaded within mini-batches

Layer dependencies cause 
blocking between threads

Equally distribute 
mini-batches across threads to 

process in parallel

Mini-batches  are independent, 
allowing sampling to proceed 
without blocking until all are 

complete.
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Asynchronous Design 

Synchronous

Asynchronous
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Workflow
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Experimental Configuration 

Machine

- Our setup includes an AMD EPYC 7713P 64C/128T CPU, 252GB DRAM, a 4TB 
Samsung SmartSSD, and an NVIDIA A100 80GB GPU. The software environment 
consists of Ubuntu 20.04, CUDA 12.1, PyTorch 2.3.1+cu121, and DGL v2.3.0+cu121. 

Model Configuration  

- 3-layer GraphSAGE model with a fanout of {20, 15, 10} and a mini-batch size of 1024.

Baselines

- DGL v2.3 (Deep Graph Library): In-memory CPU/GPU-based
- gSampler (SOSP ’23): In-memory GPU-based
- MariusGNN (EuroSys ’23): Out-of-memory CPU-based
- In-situ SmartSSD (DaMoN ’24): SSD-based
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Datasets Used For Evaluation

ogbn-papers and Friendster: Fit in memory; used to evaluate in-memory sampling performance.

Yahoo and Synthetic: Extremely large graphs that do not fit in memory; used to test the system’s ability 

to handle larger-than-memory graphs.
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Dataset Vertices Edges Raw Size (GB) Bin Size (GB)

ogbn-papers 111M 1.6B 24.1 6.8

Friendster 65M 3.6B 30.1 13.5

Yahoo 1.4B 6.6B 66.9 35.3

Synthetic 134M 8.2B 140.8 31.7



Faster Than In-Memory CPU Systems, Competitive with 
GPU Solutions

DGL-CPU: Graph stored and sampled 
on CPU

DGL-GPU, gSampler-GPU: Graph 
stored and sampled on GPU

DGL-UVA, gSampler-UVA: Graph 
stored on CPU, sampled on GPU using 
Unified Virtual Addressing (UVA) to 
access data 
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Scales to Large Graphs and Outperforms Baseline

MariusGNN: Graph stored on SSD and 
partially loaded into memory for 
CPU-based sampling

SmartSSD: Graph stored and sampled 
directly on SSD using FPGA
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Low Memory Requirement for Large-scale Sampling

Only 4 GB of memory is needed to sample a billion-edge graph 
(ogbn-papers) 21



Linear Scalability with No of Threads

Sampling run time decreases almost linearly with the number of threads, up 
to the maximum number of available cores
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Low Latency Sampling for Real-Time GNN Inference

50% of sampling requests complete within 1.15s, and 90% within 2.07s
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When RingSampler May Not Be the Best Choice

Large GPUs 

- When GPU is large enough, 
GPU-based sampling Systems 
(gSampler) will be the best choice.

Small Graphs

- For graphs that fit entirely in memory, 
the performance gains from 
io_uring-based sampling are minimal
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Future Work

End-to-end implementation

- Build an end-to-end system by integrating 
RingSampler into GNN frameworks like DGL to 
enable asynchronous CPU-based sampling alongside 
GPU-based feature aggregation.

Exploiting caching strategy and sampling reuse 

- Due to our parallel design, threads do not share 
states, which can result in reading the same nodes 
multiple times. 

io_uring kernel polling mode

- Kernel polling mode auto-submits I/O when the 
submission queue is full. 
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RingSampler

As graph data scales to 
terabyte sizes, 

out-of-memory challenges 
arise, making efficient 

sampling difficult

A CPU-based GNN system 
leveraging io_uring for 

asynchronous, batched I/O, 
and multi-threading to 

maximize CPU utilization

Efficiently handles 
larger-than-memory graphs 

and outperforms existing 
baselines.

Contact:
Qixuan(Talia) Chen
taliac@bu.edu
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RingSampler

https://github.com/CASP-Systems-BU/RingSampler


