
Mohamed bin Zayed
University of Artificial Intelligence

I/O Coordination for Better Resource Sharing

From HPC to AI Storage

Xiaosong Ma

Department of Computer Science, MBZUAI

HotStorage 2025

07/10/2025 1

2025/6/9 2

Decades Ago

2025/6/9 3

Compute Resources Shared Then

First data center – 1950s
Source: https://opticalcloudinfra.com/index.php/what-why-and-how/short-data-center-history

4

And Again Now

Source: https://www.crn.com/news/data-center/google-
unveils-new-750m-data-center-as-part-of-9-5b-goal

Data centers

Supercomputers
Source: Oak Ridge National Lab

Cloud platforms and services
Source: https://kinsta.com/blog/go`ogle-cloud-vs-aws/

AMD EPYC 9654

5

Sharing-Friendly Hardware Platforms

❑ Multi-core processors
➢ Dozens of cores

➢ CPU caches optimized for multi-tenancy (e.g., large L2 caches)

➢ TBs of DRAM space

➢ Mechanisms for inter-core resource allocation (cache ways, memory BW)

❑ Powerful interconnect
➢ Fast network connections (e.g., up to 100Gbps at AWS)

➢ Smart NICs/DPUs offloading computation tasks

❑ High-capacity storage
➢ NVMe SSDs offering space, bandwidth, and IOPS for sharing

Source: AMD

Implications of Pervasive Resource Sharing

6

❑ Programs to run
➢ on unknown/changing hardware
➢ with unknown/changing neighbors

Major challenge: performance portability

 Desirable for applications/services to
➢ retain (optimized) performance across platforms
➢ achieve hardware potential

7(https://diveintosystems.org/book/C11-MemHierarchy/mem_hierarchy.html)(https://medium.com/dataseries/a-quick-primer-on-big-o-notation-c99ccc7ddbae)

Larger, cheaper, slower, less random-friendly

Challenge Lies in Storage Hierarchy

❑ Computation logic more “portable”
➢ Instruction execution easier in scheduling and isolation

➢ Current server processors w. sizable per-core resources (e.g., L1+L2 cache)

❑ Data access path deeper and more complex

8

Storage and I/O Not Efficiently Shared

❑ Major factor leading to storage frustrations and wastes
➢ From single server to data-centers/supercomputers

❑ In this talk
➢ Sample related problems and solutions in our past research

➢ Extended I/O hierarchy for AI workloads

9

Challenging Layer 1: Shared Cache

Mature on-demand
provisioning on cloud

(Space, BW, IOPS)

Private

Cache Partitioning in Commodity Multicores

• Current processors offer hardware cache-partitioning support (Intel CAT)

• Partitioning last-level cache among co-running apps

 reduces interference ➔ improves system performance

• Kpart [HPCA ‘18]

• Two key challenges limit usability of CAT

• Current hardware implements coarse-grained way-partitioning
➔ hurts system performance!

• Lacks hardware monitoring units to collect cache-profiling data

• Solution: hybrid way partitioning and sharing among app groups

• Significant performance gain on real hardware (avg 24%, max 79%) 10

11

Challenging Layer 2: Supercomputer Shared Storage

Mature on-demand
provisioning on cloud

(Space, BW, IOPS)

Private

12

Supercomputer Storage: Not Better Shared

❑ Observation from supercomputer I/O profiling ([FAST14], [SC16], [NSDI19])

➢ Significant inter-job interference -> inconsistent I/O performance

➢ Vast majority of HPC jobs non-I/O intensive -> overall low I/O resource utilization

Name Value

Total number of logged jobs 181,969

Unique applications identified 9,998

Initial I/O-intensive candidates 95

Candidates passing scope checking 67

Candidates passing minimum support 42

User-verified candidates 8

Job I/O statistics based on ORNL Titan supercomputer, 2015

59.1% time < 1% capacity

13

70.4% time < 5% capacity

Bottleneck, Contention Point, and Under-Utilization

13

End-to-end Supercomputer I/O Monitoring [NSDI19]

❑ Understand HPC I/O for designing future systems/applications
➢ Lightweight end-to-end I/O resource monitoring

❑ Deployed at TaihuLight
➢ No user effort required
➢ Code and monitoring data released: https://github.com/Beaconsys/Beacon

❑ Findings based on 18-month monitoring on production platform
➢ Wide-spread adoption of inefficient I/O modes

• Lowing both application performance and hardware utilization
➢ System anomalies and their behaviors (echoing findings from datacenters)
➢ Obscure design/configuration problems, e.g., forwarding layer cache thrashing
➢ Significant forwarding node load imbalance => Application-aware I/O forwarding [FAST19]

14
14

(Remote) PM

Another Layer in Pyramid: Remote PM

❑ Persistent memory disaggregation
➢ Faster than local SSDs with RDMA

➢ Enables
• large memory buffer
• lean compute nodes

15

• Distributed RDBMS [ASPLOS23, VLDB25]

Cloud-Native DB on Disaggregated PM

16

DRAM limitations
- Expensive
- Low density
- Volatile

Fast Interconnect

SQL Execution Engine

CPU Layer

Buffer Pool

Storage

DRAM Layer

HDD/ SDD Layer

Optane PM XL-FLASH

All-around features:
• Performance close DRAM
• Yet cheaper
• High density
• Byte-addressable
• Non-volatile

DRAMSQL

TXN

Compute Nodes (CNs)

(10GB)

PM Nodes (PMNs)

PM
(buffer and logs)

(2TB)

Thin-CN pros
- Core utilization
- Fast recovery

17

“Storage Container” All the Way

(Remote) PM

v

Private

Within single workload:
how to better use

allocated hardware?

Sample Memory/Cache Performance

18

 Sequential reads quite cheap, and relatively uniform
➢ Even across NUMA node (remote memory)

 Random reads slower, with wider distribution
➢ Large gap between L3 and DRAM
➢ Pointer-chasing especially costly: even in L3

Location L1 cache L2 cache L3 cache Local mem Remote mem

Sequential read 0.42ns 0.41ns 0.44ns 0.76ns 1.51ns

Random Read 0.77ns 0.95ns 2.60ns 18.35ns 24.35ns

Pointer-chasing 1.69ns 5.26ns 19.26ns 116.90ns 194.26ns

4-byte read latency at different cache/DRAM layers

High-Concurrency Scenario 1: Graph Random Walk

• Problem definition
• Input: graph, set of walkers

placed at starting vertices

• Each walker walks around

• By randomly selecting an
edge to follow

• For given number of steps or
till given termination
condition

• Output

• Computation during walk,
and/or

• Set of walk paths

19

…

Challenge: Slow Random Memory Accesses

20

Walkers make random choices
➢ Following only one edge

 Problem with existing solutions
➢ Accept randomness in memory accesses
➢ Process walkers in turn, wherever they are
➢ High data dependency (pointer chasing)
➢ Low utilization of loaded cache lines

Edge list

Sample 1 edge

Rest of cacheline discarded

Location L1 cache L2 cache L3 cache Local mem Remote mem

Sequential read 0.42ns 0.41ns 0.44ns 0.76ns 1.51ns

Random Read 0.77ns 0.95ns 2.60ns 18.35ns 24.35ns

Pointer-chasing 1.69ns 5.26ns 19.26ns 116.90ns 194.26ns

• Random walk doesn’t mean random memory accesses

▪ Plenty of temporal and spatial locality around!

Access latency at different cache/DRAM layers

DRAM

FlashMob [SOSP21]: Cache-speed Graph Random Walk

21

Task 1

Task 2

L3 (LLC)

L2

L1

Cache-aware
vertex partitions

All walkers in partition

0

50

100

150

200

250

300

Ti
m

e/
st

ep
 (n

s) KnightKing [SOSP19]

FlashMob

• High concurrency is good!

▪ Economy of scale for objects cached

22

High-Concurrency Scenario 2: Memory Caching

Most hits on frozen cache (FC)
• No list management
• No locks
• Faster hash table

❑ New challenges due to high-performance hardware
➢ Faster storage: 1000x to 10x latency gap from DRAM
➢ Scalability to high core counts

❑ FrozenHot [EuroSys ’23]
➢ Speeding up hit path by removing cache management

• High concurrency is bad!

▪ Write contention on cache hits

High-Concurrency Scenario 3: KV Stores

23

2TB, 500k IOPSNVMe SSD

500GB,
1M IOPS,
2GB/s BW

NVMe SSD

5TB, 3GB/s BW SATA SSD

❑ SpanDB [FAST21]
➢ Implemented within RocksDB

❑ Distributing LSM-tree based KV data
➢ Large and slow disk for capacity
➢ Small and fast disk for speed

❑ Automatic tree layer placement
➢ Adaptive to partition sizes and workloads
➢ Allow hybrid storage for cost-effectiveness

24

Storage and I/O Not Efficiently Shared

❑ Major factor leading to storage frustrations and wastes
➢ From single server to data-centers/supercomputers

❑ In this talk
➢ Sample related problems and solutions in our past research

➢ Extended I/O hierarchy for AI workloads

25

NVIDIA H100 Memory Hierarchy
Credit: Izzat El Hajj, HetSys Course: Lecture 4: GPU Memory Hierarchy (Spring 2023), Onur Mutlu Lectures

AI and LLM Age: GPU as a Supercomputer

c Global memory (HBM)
Much larger/slower

❑ FlashAttention: optimization targeting long sequences
➢ Adopted by major LLM frameworks: PyTorch, Megatron, DeepSeek …

GPU Global Memory the New Disk?

CPU/GPU-Side Storage Hierarchy (Capacity)

384MB

96MB

6MB

750GB

4-32 TB

50MB

33MB

80GB

CPU (AMD EYPC 9654)

Resgister

SSDs

L1 Cache

L2 Cache

L3 Cache

Main Memory

Resgister

GPU (H100)

Aggregate capacity

L1 Cache

L2 Cache

High Bandwidth Memory

12TB/s

33TB/s

3.35TB/s

CPU (E.g. AMD EYPC 9654)

Resgister

SSDs

HBM

GPU (E.g. H100)

Aggregate bandwidth

768GB/s

460GB/s

44TB/s

12TB/s

Resgister

Main Memory

L1 Cache

L2 Cache

L3 Cache

L1 Cache

L2 Cache

CPU/GPU-Side Storage Hierarchy (Bandwidth)

29

Operator Workload Access type Bottleneck

Normalization Training & inference Balanced R-W Memory

GEMM Training & inference Mainly reads Compute → Memory

Attention Training & inference Mainly reads See table below

Dropout Training Balanced R-W Memory

Activation Function Training & inference Balanced R-W Compute → Memory

Attn sequence length Workload Bound
Long Training & prefill Compute → Memory

Short Training & prefill Compute → Memory

Long Decode Memory

Short Decode Compute → Memory

“I/O Characteristics” of Transformer Components

Good News: Storage-Friendly Access Patterns

30

❑ Large, sequential, read-heavy accesses
➢ Little random reads, relatively light writes
➢ Regular, predictable, collaborative data streaming
➢ Data content/precision could be manipulated!

❑Many storage/HPC tricks apply
➢ Prefetching
➢ Tiling/Tiering

Bad News: High Efficiency Demands Large Space

31

❑ GPU MFU (Model FLOPS Utilization) relies on batch size
➢ Larger batches -> higher parallelism, more data reuse
➢ Current leading frameworks get <50% of GPU peak TFLOPS

❑ Batch size limited by HBM size
➢ Especially w. long-sequence attention in decoding

12TB/s

33TB/s

3.35TB/s

CPU (E.g. AMD EYPC 9654)

Resgister

SSDs

HBM

GPU (E.g. H100)

Aggregate bandwidth

768GB/s

460GB/s

44TB/s

12TB/s

Resgister

Main Memory

L1 Cache

L2 Cache

L3 Cache

L1 Cache

L2 Cache

Can CPU-Side Memory Help?

PCIe 5.0 x16

64GB/s

33

Recent Work on Reducing KV-Cache I/O Demands

❑ Parameter/KV Cache offloading
➢ FlexGen [ICML23]
➢ MoE-Lightning [ASPLOS25]

❑ KV Cache Compression
➢ Keyformer [MLsys24]

❑ Quantization
➢ ZipCache [NeurlPS24]

❑ Window attention
➢ StreamingLLM [ICLR24]

34

Closing Remarks

❑ Shared nature makes storage challenging and interesting
➢ Contention and interference, but also higher throughput and utilization
➢ Joint CPU-GPU storage hierarchy creates more scenarios for sharing/coordination

• HBM too small to saturate GPU cores, too fast for DRAM to stream

❑ Education also challenged by new modes of knowledge sharing
➢ AI practitioners need to know systems basics
➢ CS students need to retain focus/courage in system building

	Slide 1: I/O Coordination for Better Resource Sharing From HPC to AI Storage
	Slide 2: Decades Ago
	Slide 3: Compute Resources Shared Then
	Slide 4: And Again Now
	Slide 5: Sharing-Friendly Hardware Platforms
	Slide 6: Implications of Pervasive Resource Sharing
	Slide 7
	Slide 8
	Slide 9: Challenging Layer 1: Shared Cache
	Slide 10: Cache Partitioning in Commodity Multicores
	Slide 11: Challenging Layer 2: Supercomputer Shared Storage
	Slide 12
	Slide 13: Bottleneck, Contention Point, and Under-Utilization
	Slide 14
	Slide 15: Another Layer in Pyramid: Remote PM
	Slide 16: Cloud-Native DB on Disaggregated PM
	Slide 17: “Storage Container” All the Way
	Slide 18: Sample Memory/Cache Performance
	Slide 19: High-Concurrency Scenario 1: Graph Random Walk
	Slide 20: Challenge: Slow Random Memory Accesses
	Slide 21: FlashMob [SOSP21]: Cache-speed Graph Random Walk
	Slide 22: High-Concurrency Scenario 2: Memory Caching
	Slide 23: High-Concurrency Scenario 3: KV Stores
	Slide 24
	Slide 25: AI and LLM Age: GPU as a Supercomputer
	Slide 26
	Slide 27: CPU/GPU-Side Storage Hierarchy (Capacity)
	Slide 28
	Slide 29
	Slide 30: Good News: Storage-Friendly Access Patterns
	Slide 31: Bad News: High Efficiency Demands Large Space
	Slide 32
	Slide 33: Recent Work on Reducing KV-Cache I/O Demands
	Slide 34

