

I/O Coordination for Better Resource Sharing

From HPC to Al Storage

Xiaosong Ma Department of Computer Science, MBZUAI

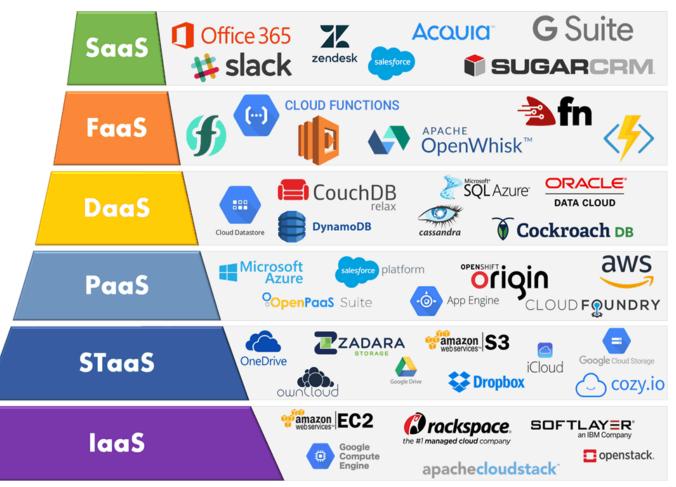
HotStorage 2025

First data center – 1950s Source: https://opticalcloudinfra.com/index.php/what-why-and-how/short-data-center-history

Supercomputers Source: Oak Ridge National Lab

Data centers

Source: https://www.crn.com/news/data-center/googleunveils-new-750m-data-center-as-part-of-9-5b-goal



Cloud platforms and services

Source: https://kinsta.com/blog/go`ogle-cloud-vs-aws/

Sharing-Friendly Hardware Platforms

Multi-core processors

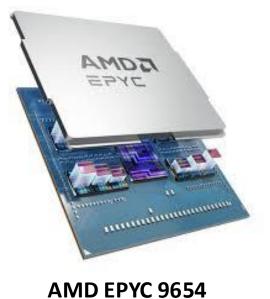
- Dozens of cores
- > CPU caches optimized for multi-tenancy (e.g., large L2 caches)
- ➢ TBs of DRAM space
- Mechanisms for inter-core resource allocation (cache ways, memory BW)

Powerful interconnect

- Fast network connections (e.g., up to 100Gbps at AWS)
- Smart NICs/DPUs offloading computation tasks

□ High-capacity storage

NVMe SSDs offering space, bandwidth, and IOPS for sharing



Implications of Pervasive Resource Sharing

Programs to run

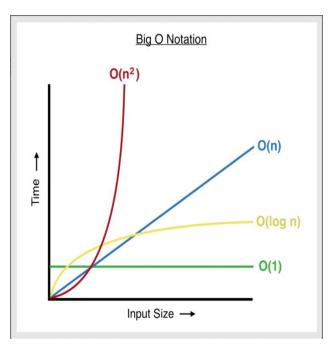
- on unknown/changing hardware
- with unknown/changing neighbors

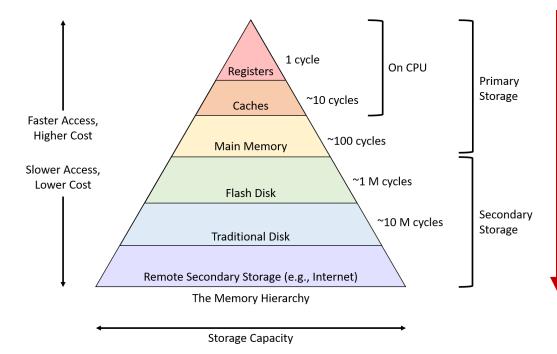
□ Major challenge: performance portability

- Desirable for applications/services to
 - retain (optimized) performance across platforms
 - achieve hardware potential

Challenge Lies in Storage Hierarchy

- □ Computation logic more "portable"
 - Instruction execution easier in scheduling and isolation
 - Current server processors w. sizable per-core resources (e.g., L1+L2 cache)
- □ Data access path deeper and more complex



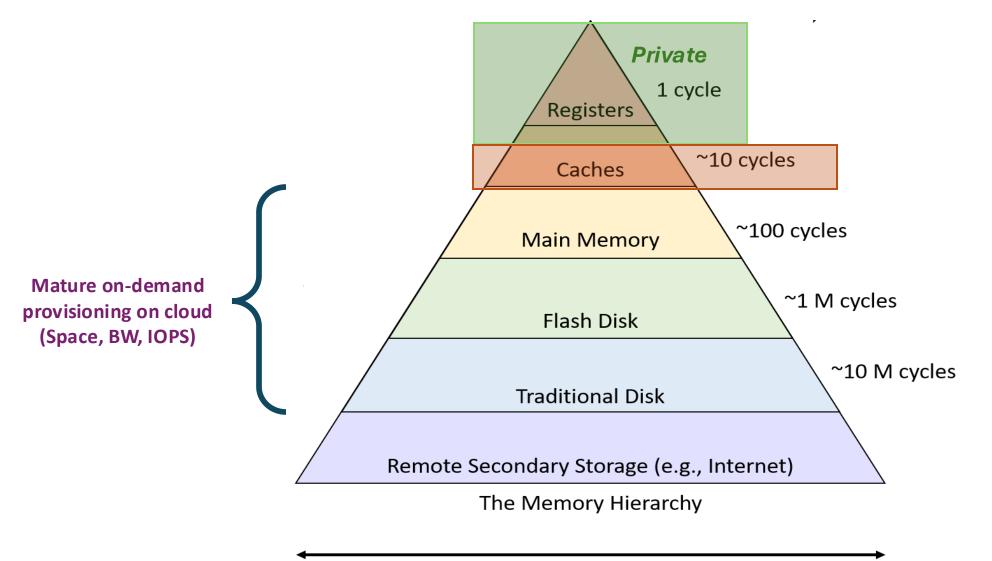


Larger, cheaper, slower, less random-friendly

Storage and I/O Not Efficiently Shared

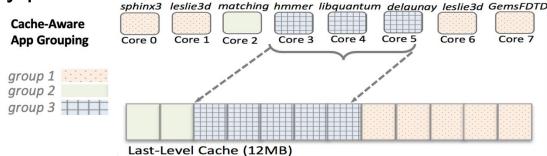
□ Major factor leading to storage frustrations and wastes

- From single server to data-centers/supercomputers
- $\hfill\square$ In this talk
 - Sample related problems and solutions in our past research
 - Extended I/O hierarchy for AI workloads



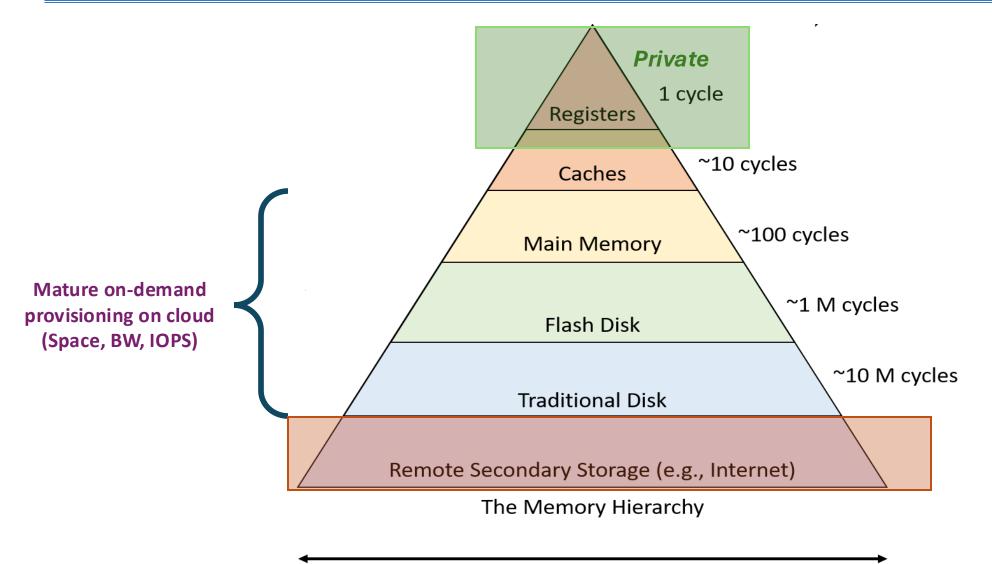
Cache Partitioning in Commodity Multicores

- Current processors offer hardware cache-partitioning support (Intel CAT)
- Partitioning last-level cache among co-running apps reduces interference \rightarrow improves system performance
- *Kpart* [HPCA '18]
- X Two key challenges limit usability of CAT
 - Current hardware implements coarse-grained way-partitioning → hurts system performance!
 - Lacks hardware monitoring units to collect cache-profiling data
- Solution: hybrid way partitioning and sharing among app groups



Significant performance gain on real hardware (avg 24%, max 79%) ٠

Challenging Layer 2: Supercomputer Shared Storage



Supercomputer Storage: Not Better Shared

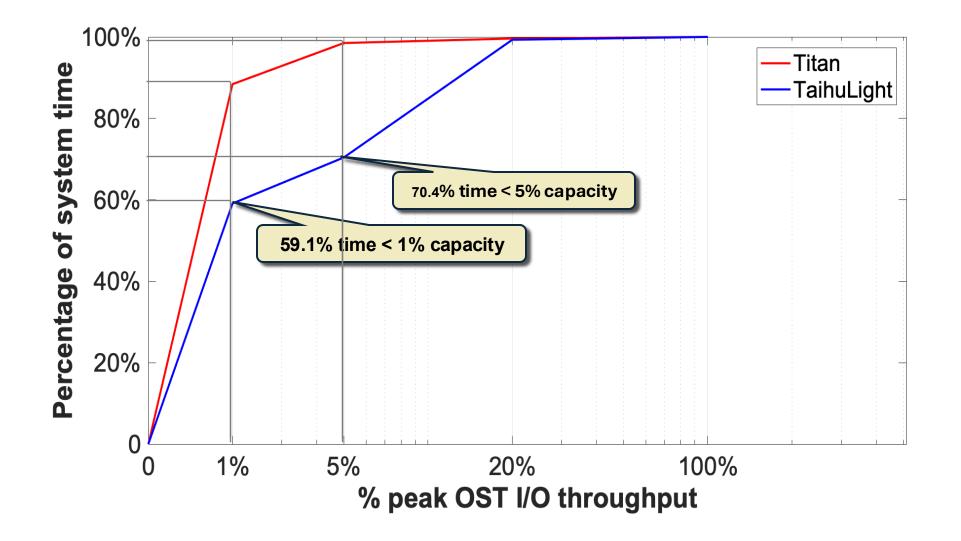
□ Observation from supercomputer I/O profiling ([FAST14], [SC16], [NSDI19])

- Significant inter-job interference -> inconsistent I/O performance
- Vast majority of HPC jobs non-I/O intensive -> overall low I/O resource utilization

Name	Value
Total number of logged jobs	181,969
Unique applications identified	9,998
Initial I/O-intensive candidates	95
Candidates passing scope checking	67
Candidates passing minimum support	42
User-verified candidates	8

Job I/O statistics based on ORNL Titan supercomputer, 2015

Bottleneck, Contention Point, and Under-Utilization



End-to-end Supercomputer I/O Monitoring [NSDI19]

Understand HPC I/O for designing future systems/applications

Lightweight end-to-end I/O resource monitoring

Deployed at TaihuLight

- No user effort required
- Code and monitoring data released: https://github.com/Beaconsys/Beacon

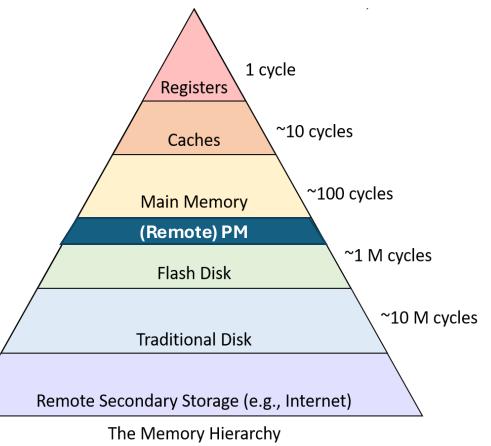
□ Findings based on 18-month monitoring on production platform

- > Wide-spread adoption of inefficient I/O modes
 - Lowing both application performance and hardware utilization
- > System anomalies and their behaviors (echoing findings from datacenters)
- > Obscure design/configuration problems, e.g., forwarding layer cache thrashing
- Significant forwarding node load imbalance => Application-aware I/O forwarding [FAST19]

Another Layer in Pyramid: Remote PM

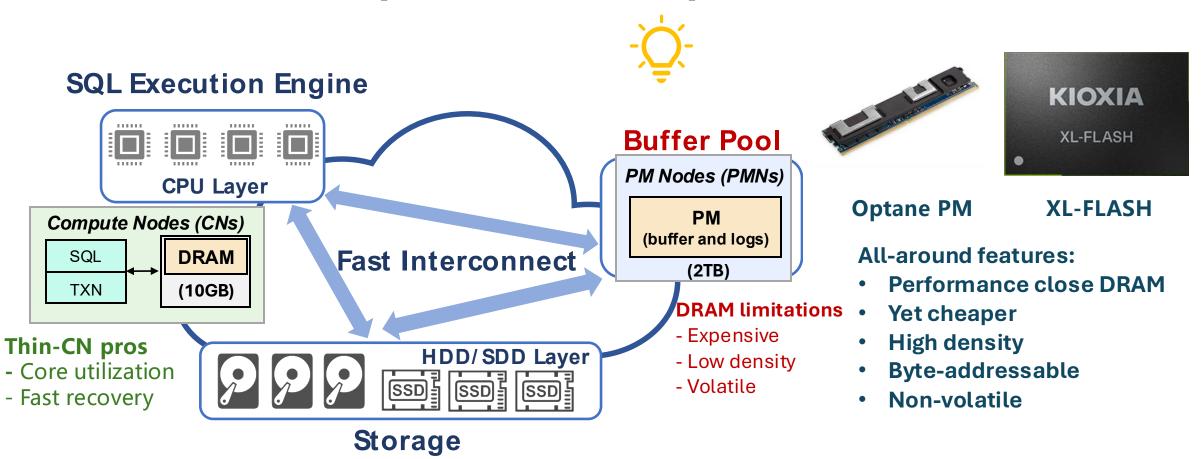
Persistent memory disaggregation

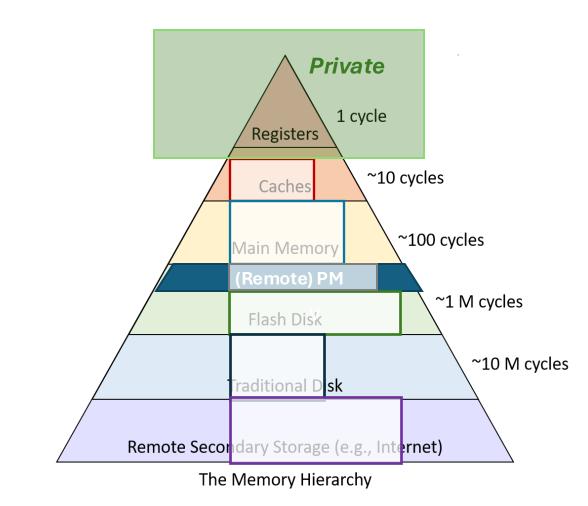
- Faster than local SSDs with RDMA
- Enables
 - large memory buffer
 - lean compute nodes



Cloud-Native DB on Disaggregated PM

• Distributed RDBMS [ASPLOS23, VLDB25]





Within single workload: how to better use allocated hardware?

Location	L1 cache	L2 cache	L3 cache	Local mem	Remote mem
Sequential read	0.42ns	0.41ns	0.44ns	0.76ns	1.51ns
Random Read	0.77ns	0.95ns	2.60ns	18.35ns	24.35ns
Pointer-chasing	1.69ns	5.26ns	19.26ns	116.90ns	194.26ns

4-byte read latency at different cache/DRAM layers

Sequential reads quite cheap, and relatively uniform

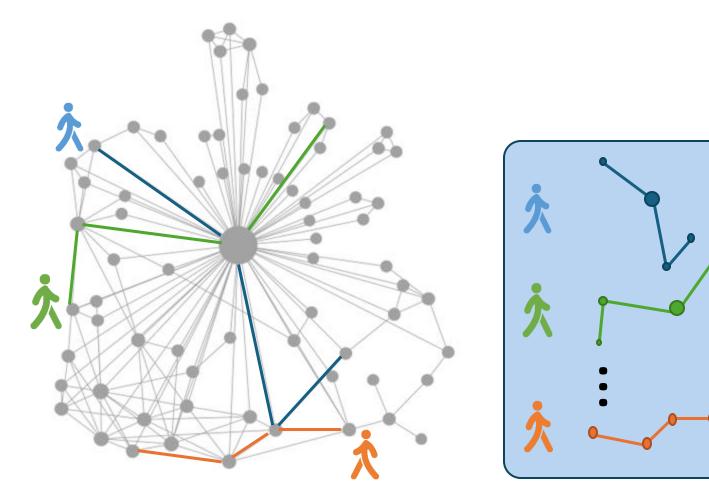
Even across NUMA node (remote memory)

D Random reads slower, with wider distribution

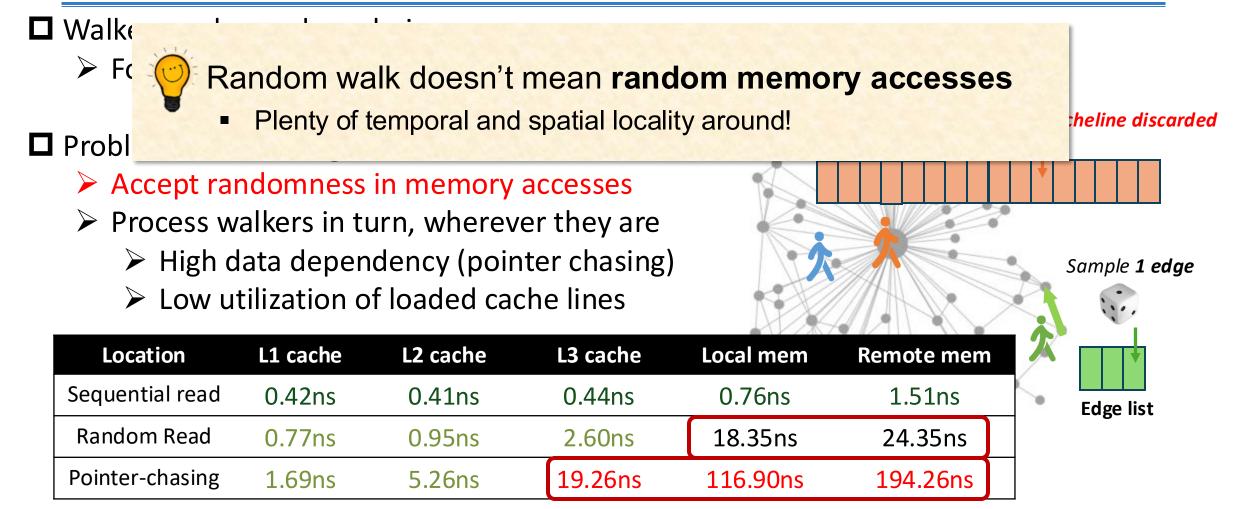
- Large gap between L3 and DRAM
- Pointer-chasing especially costly: even in L3

High-Concurrency Scenario 1: Graph Random Walk

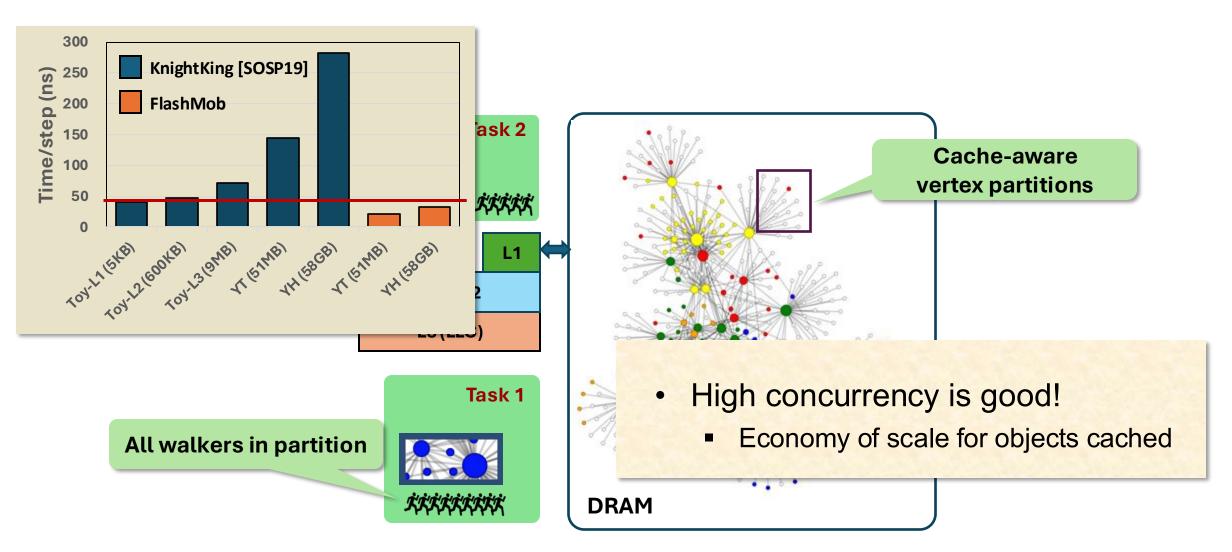
- Problem definition
 - Input: graph, set of walkers placed at starting vertices
 - Each walker walks around
 - By randomly selecting an edge to follow
 - For given number of steps or till given termination condition
 - Output
 - Computation during walk, and/or
 - Set of walk paths



Challenge: Slow Random Memory Accesses



Access latency at different cache/DRAM layers

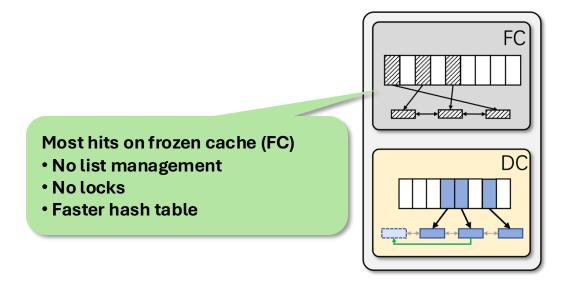


High-Concurrency Scenario 2: Memory Caching

- New challenges due to high-performance hardware
 - ➢ Faster storage: 1000x to 10x latency gap from DRAM
 - Scalability to high core counts

□ FrozenHot [EuroSys '23]

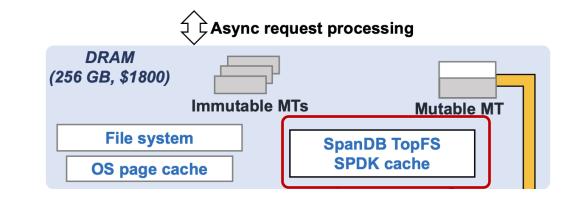
Speeding up hit path by removing cache management



- High concurrency is bad!
 - Write contention on cache hits

High-Concurrency Scenario 3: KV Stores

- □ SpanDB [FAST21]
 - Implemented within RocksDB
- Distributing LSM-tree based KV data
 - Large and slow disk for capacity
 - Small and fast disk for speed
- □ Automatic tree layer placement
 - Adaptive to partition sizes and workloads
 - > Allow hybrid storage for cost-effectiveness

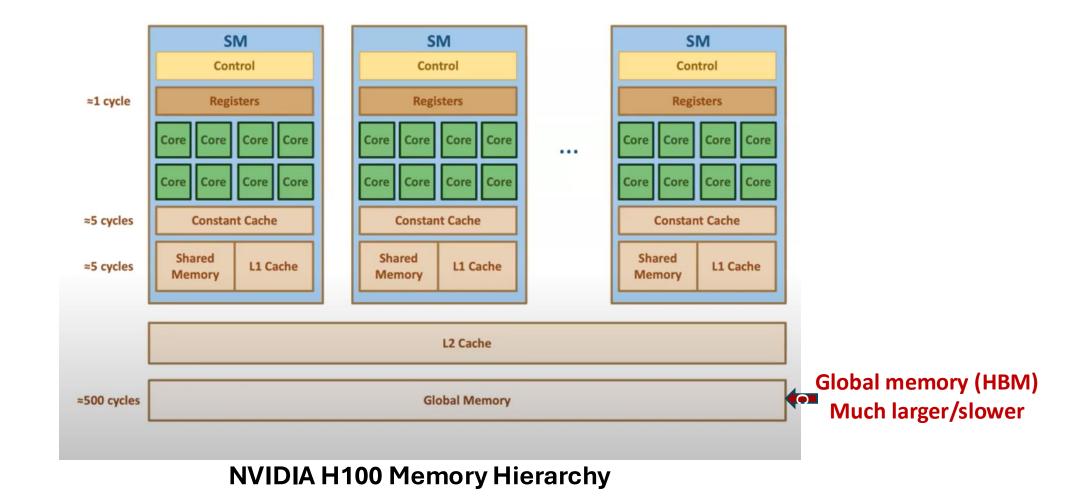


Storage and I/O Not Efficiently Shared

□ Major factor leading to storage frustrations and wastes

- From single server to data-centers/supercomputers
- In this talk
 - Sample related problems and solutions in our past research
 - Extended I/O hierarchy for AI workloads

Al and LLM Age: GPU as a Supercomputer



Credit: Izzat El Hajj, HetSys Course: Lecture 4: GPU Memory Hierarchy (Spring 2023), Onur Mutlu Lectures

FlashAttention: optimization targeting long sequences
> Adopted by major LLM frameworks: PyTorch, Megatron, DeepSeek ...

FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

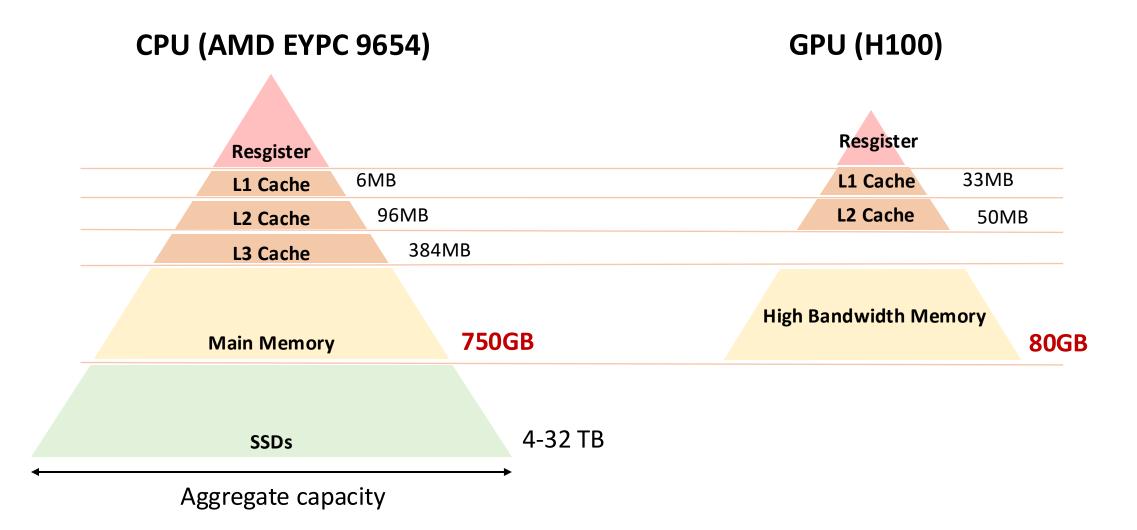
Tri Dao[†], Daniel Y. Fu[†], Stefano Ermon[†], Atri Rudra[‡], and Christopher Ré[†]

[†]Department of Computer Science, Stanford University [‡]Department of Computer Science and Engineering, University at Buffalo, SUNY {trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

June 24, 2022

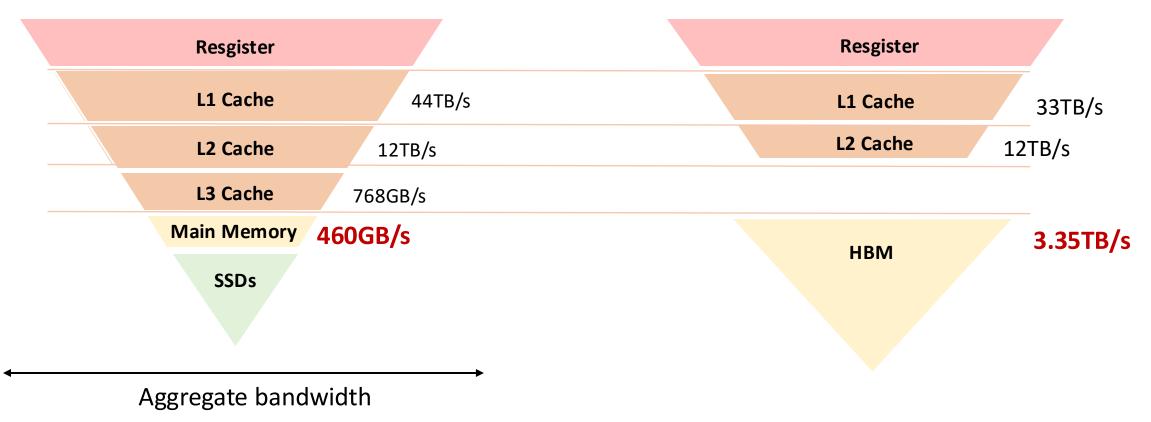
Abstract

Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms *IO-aware*—accounting for reads and writes between levels of GPU memory. We propose FLASHATTENTION,



CPU (E.g. AMD EYPC 9654)

GPU (E.g. H100)



"I/O Characteristics" of Transformer Components

Operator	Workload	Access type	Bottleneck
Normalization	Training & inference	Balanced R-W	Memory
GEMM	Training & inference	Mainly reads	Compute → Memory
Attention	Training & inference	Mainly reads	See table below
Dropout	Training	Balanced R-W	Memory
Activation Function	Training & inference	Balanced R-W	Compute → Memory

Attn sequence length	Workload	Bound
Long	Training & prefill	Compute → Memory
Short	Training & prefill	Compute → Memory
Long	Decode	Memory
Short	Decode	Compute → Memory

Good News: Storage-Friendly Access Patterns

Large, sequential, read-heavy accesses

- Little random reads, relatively light writes
- Regular, predictable, collaborative data streaming
- > Data content/precision could be manipulated!
- □ Many storage/HPC tricks apply
 - Prefetching
 - > Tiling/Tiering

Bad News: High Efficiency Demands Large Space

GPU MFU (Model FLOPS Utilization) relies on batch size

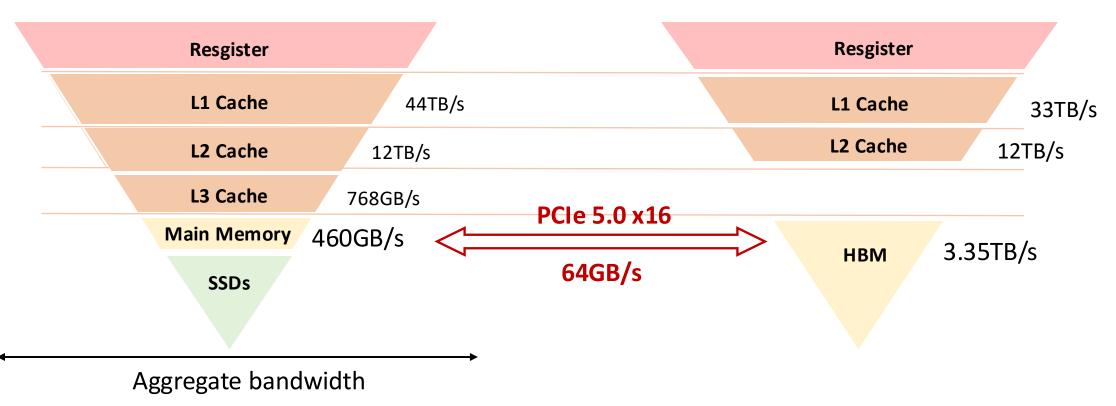
- Larger batches -> higher parallelism, more data reuse
- Current leading frameworks get <50% of GPU peak TFLOPS</p>

Batch size limited by HBM size

Especially w. long-sequence attention in decoding

CPU (E.g. AMD EYPC 9654)

GPU (E.g. H100)



Recent Work on Reducing KV-Cache I/O Demands

Parameter/KV Cache offloading

- FlexGen [ICML23]
- MoE-Lightning [ASPLOS25]
- □ KV Cache Compression
 - Keyformer [MLsys24]

Quantization

- > ZipCache [NeurlPS24]
- Window attention
 - StreamingLLM [ICLR24]

□ Shared nature makes storage challenging and interesting

- Contention and interference, but also higher throughput and utilization
- > Joint CPU-GPU storage hierarchy creates more scenarios for sharing/coordination
 - HBM too small to saturate GPU cores, too fast for DRAM to stream

Education also challenged by new modes of knowledge sharing

- > Al practitioners need to know systems basics
- CS students need to retain focus/courage in system building