-ﬁ'

,t,'cs:.d'. Mohamed bin Zayed

«* University of Artificial Intelligence

I/O Coordination for Better Resource Sharing

From HPC to Al Storage

Xiaosong Ma

Department of Computer Science, MBZUAI
HotStorage 2025

07/10/2025

'ﬁ'

v >.¢'E' Decades Ago

HERE are over 130 women

scientists working in the
Research Institute of the Nan-
jing Chemical Industry Com-
pany. These women, account-
ing for approximately one-
fourth of the total number of
scientists within the Institute,
have made considerable
contributions to research work
done there.

Left:

Lin Silan, an engineer in the No. 4
Laboratory, has specialized in the
study of analysis instruments for 13
years. At one time she was involved
in the research work on, and manu-
facture of, an industrial Polarographic
S0, Continuous Analyzer and a warn-

TOP from left to right:
Yin Danping, studying the func-
tion of t in f
has helped a computer pro-

amme for salary ons and one
;or ?Eﬂe management. She and Ber
colleague Wwor a system for

lective dis ination of information.

ing apparatus for acid leak: In
. 1979, she and her colleagues completed
i ial dust aut

on an
itor by using the photoelectric trans-
mission method, thus filling an im-
portant gap in China’s chemical in-
_ dustry.

Chen Shuzhen was in a research team
for developing a low-t t shift
¢ and an improved, ck i
free type with a lower copper content.
She is now studying the life and

g

Compute Resources Shared Then

First data center — 1950s

Source: https://opticalcdoudinfra.com/index.php/what-why-and-how/short-data-center-history

2025/6/9

Now
Acouia G Suite

4%
§ SUGARCREIVI

1] Office 365
“ slack zendesk
2fn
<D

CLOUD FUNCTIONS
APACHE) .
OpenWhisk

E*» §"(°j°[Azure: ORACLE’
DATA CLOUD

“%% And Again

, @ = CoucthB .
& relax W
Supercomputers Jr,rJr Cloud Datastore . DynamoDB cassandra ?COCkI'OﬂCh DB
S : Oak Ridge National Lab
ource: Oak Ridge lona a | mm Microsoft p!atform OPENSHIFT® _ ® aWS
% ™ =W Azure . oriQin S
! Paa$ Suite ADF’ Engine “cLOUD FQUNDR‘Y
@ DzroARA imn|S3 =4
OneDrive : Google coud storage
L iCloud)
cwone S Drophox (N cozy.io
LAY=R’
an IBM Company

ownCloud
' amazon [EC2 (Drackspace. soFT
the #1 managed cloud compary

= openstack.

@ Google
Compute
Engine apachecloudstack

Cloud platforms and services

Source: https://kinsta.com/blog/go’ogle-cloud-vs-aws/

Data centers
Source: https://www.crn.com/news/data-center/google-
unveils-new-750m-data-center-as-part-of-9-5b-goal

‘3":3:’.55 Sharing-Friendly Hardware Platforms

Q Multi-core processors
» Dozens of cores
» CPU caches optimized for multi-tenancy (e.g., large L2 caches)
» TBs of DRAM space
» Mechanisms for inter-core resource allocation (cache ways, memory BW)

Q Powerful interconnect
» Fast network connections (e.g., up to 100Gbps at AWS)

AMD EPYC 9654
» Smart NICs/DPUs offloading computation tasks ouree: AND

Q High-capacity storage
» NVMe SSDs offering space, bandwidth, and IOPS for sharing

o

Implications of Pervasive Resource Sharing

J Programs to run
» on unknown/changing hardware
» with unknown/changing neighbors

0 Major challenge: performance portability

1 Desirable for applications/services to
> retain (optimized) performance across platforms
» achieve hardware potential

3":"’* >2 Challenge Lies in Storage Hierarchy

Q Computation logic more “portable”
» |Instruction execution easier in scheduling and isolation
» Current server processors w. sizable per-core resources (e.g., L1+L2 cache)

Q Data access path deeper and more complex
Larger, cheaper, slower, less random-friendly

Big O Notation
0O(n? 1 cycle
(n) Registers On CPU ‘
Primary
~ Storage
Caches 10 cycles g
Faster Access,
n Higher Cost .
T O(n) Main Memory 100 cycles |
o Slower Access,
E Lower Cost) ~1 M cycles
= Flash Disk
~10 M cycles ;e;::;miary
Traditional Disk g
¥4 0(1)
Remote Secondary Storage (e.g., Internet)
Input Size —> The Memory Hierarchy

Storage Capacity

(https://medium.com/dataseries/a-quick-primer-on-big-o-notation-c99ccc7ddbae) (https://diveintosystems.org/book/C11-MemHierarchy/mem_hierarchy.html)

“%2% Storage and I/0 Not Efficiently Shared

Q Major factor leading to storage frustrations and wastes
» From single server to data-centers/supercomputers

Q In this talk
» Sample related problems and solutions in our past research

» Extended I/O hierarchy for Al workloads

-
‘2":3:‘5 Challenging Layer 1: Shared Cache

Private

1 cycle
Registers

/ \
/ Caches \”10 cycles

/ Main Memory \“‘100 cycles

~1 M cycles

Mature on-demand

provisioning on cloud Flash Disk
(Space, BW, IOPS)

~10 M cycles
Traditional Disk

/ Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

Storage Capacity

P
.’ 5'.;' Cache Partitioning in Commodity Multicores

v Current processors offer hardware cache-partitioning support (Intel CAT)

Partitioning last-level cache among co-running apps

2 cavium

reduces interference = improves system performance = i
Kpart [HPCA ‘18] O Ld

X Two key challenges limit usability of CAT

* Current hardware implements coarse-grained way-partitioning
=» hurts system performance!

» Lacks hardware monitoring units to collect cache-profiling data
Solution: hybrid way partitioning and sharing amona app aroups

sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD

Cache-Aware [J [] [] [,,,] [] [‘] [_J [_]

OCTEONTX

App Grouping Core0 Corel Core?2)\Core 3 Core4d CoreJS Core 6 Core 7
// N //
s e
group 1 o o’
group 2 7 R
PR 2 »
| SESSE SSSES SSSSS SSSSS

Last-Level Cache (12MB)

« Significant performance gain on real hardware (avg 24%, max 79%)

P
e;:s:é Challenging Layer 2: Supercomputer Shared Storage

Private

1 cycle
Registers

/ \
/ Caches \”10 cycles

/ Main Memory \"100 cycles

~1 M cycles

Mature on-demand
provisioning on cloud Flash Disk

(Space, BW, IOPS)
~10 M cycles
Traditional Disk
/ Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

Storage Capacity

3":3:’? Supercomputer Storage: Not Better Shared

O Observation from supercomputer |/O profiling ([FAST14], [SC16], [NSDI19])

> Significant inter-job interference -> inconsistent |/O performance
» Vast majority of HPC jobs non-1/0 intensive -> overall low 1/O resource utilization

ame

Total number of logged jobs 181,969
Unique applications identified 9,998
Initial I/0-intensive candidates 95
Candidates passing scope checking 67
Candidates passing minimum support 42
User-verified candidates 8

Job 1/0 statistics based on ORNL Titan supercomputer, 2015

Bottleneck, Contention Point, and Under-Utilization

100%

80%

Percentage of system time

70.4% time < 5% capacity

59.1% time < 1% capacity

—Titan
— TaihuLight

1%

IS%HI 20%| 100%
% peak OST /O throughput

13

'i:g..

»
v 5'.;' End-to-end Supercomputer I/0O Monitoring [NSDI19]

J Understand HPC I/0 for designing future systems/applications
> Lightweight end-to-end I/O resource monitoring

 Deployed at TaihuLight
» No user effort required
» Code and monitoring data released: https://github.com/Beaconsys/Beacon

 Findings based on 18-month monitoring on production platform
» Wide-spread adoption of inefficient /O modes
Lowing both application performance and hardware utilization
» System anomalies and their behaviors (echoing findings from datacenters)
» Obscure design/configuration problems, e.g., forwarding layer cache thrashing
» Significant forwarding node load imbalance => Application-aware |/O forwarding [FAST19]

?':A“ Another Layer in Pyramid: Remote PM

d Persistent memory disaggregation

» Faster than local SSDs with RDMA
> Enables Registers 1 cycle

* large memory buffer
Caches 10 cycles
* lean compute nodes

~100 cycles

Main Memory

(Remote) PM

~1 M cycles
Flash Disk

~10 M cycles
Traditional Disk
/ Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

‘2":3:’45 Cloud-Native DB on Disaggregated PM

* Distributed RDBMS [ASPLOS23, VLDB25]

SQL Execution Engine

[E m]: m]: =] Buffer Pool

""" CPU Layer | PM Nodes (PMNs))

Compute Nodes (CNs) a (buﬁerzwd o Optane PM XL-FLASH
=] Joun] \rast inercomnect | TG awoatenen
= oo DRAM limitations « Yetcheaper

Thin-CN pros - Expensive + High density

* Non-volatile

- Core utilization : .F!DP/%)D. La.y:er -\L/oxl/v qlensity . Byte-addressable
- Fast recovery ad Ul U I_SSD_Ig [_ssn_lg [.ssc:lg - Volatile

Storage

16

P

Private
1 cycle
Registers

/ AN

/ Caches \"'10 cycles

~100 cycles

~1 M cycles

~10 M cycles
sk
/ Remote Sec0|| rnet) \

The Memory Hierarchy

“Storage Container” All the Way

Within single workload:
how to better use
allocated hardware?

17

e

Sample Memory/Cache Performance

Location L1 cache L2 cache L3 cache Local mem Remote mem
Sequential read 0.42ns 0.41ns 0.44ns 0.76ns 1.51ns
Random Read 0.77ns 0.95ns 2.60ns 18.35ns 24.35ns
Pointer-chasing ~ 1.69ns 5.26ns 19.26ns 116.90ns 194.26ns

4-byte read latency at different cache/DRAM layers

[0 Sequential reads quite cheap, and relatively uniform
» Even across NUMA node (remote memory)

[0 Random reads slower, with wider distribution
» Large gap between L3 and DRAM
» Pointer-chasing especially costly: even in L3

5o

 Problem definition

 Input: graph, set of walkers
placed at starting vertices
« Each walker walks around

« By randomly selecting an
edge to follow

» For given number of steps or
till given termination
condition

« Qutput

« Computation during walk,
and/or

» Set of walk paths

3";' High-Concurrency Scenario 1: Graph Random Walk

,-':5:;5} Challenge: Slow Random Memory Accesses

O Walke
> F @ Random walk doesn’t mean random memory accesses
= Plenty of temporal and spatial locality around! theline discarded
O Probl

» Accept randomness in memory accesses
» Process walkers in turn, wherever they are

» High data dependency (pointer chasing) Sample 1 edge
» Low utilization of loaded cache lines

Location L1 cache L2 cache L3 cache Local mem Remote mem v
Sequential read 0.42ns 0.41ns 0.44ns 0.76ns 1.51ns Edge list
Random Read 0.77ns 0.95ns 2.60ns [18.35ns 24.35ns
Pointer-chasing 1.69ns 5.26ns [19.26ns 116.90ns 194.26ns

Access latency at different cache/DRAM layers

~
3;:3."5 FlashMob [SOSP21]: Cache-speed Graph Random Walk

300

B Knightking [SOSP19]

N
(3]
o

0
c
o 200 . FlashMob P
2 150 sk 2 : B
3 100 I Cache-aware
ig | X vertex partitions
0 e s -
d & & @& P &
R N R T [-“' A Si/ ’
&OA N2 o\\'\' < ~\Q~ *\Q‘) SV Ty A
«OA A 2 . ;0 "“;\.o.\‘ o .‘
|) e -’ﬁ)\." o
Task1 (-« High concurrency is good!
All walkers in partition ’ m,‘ = Economy of scale for objects cached
MMM | DRAM]

&

Q New challenges due to high-performance hardware

> Faster storage: 1000x to 10x latency gap from DRAM
> Scalability to high core counts « High concurrency is bad!

= \Write contention on cache hits

High-Concurrency Scenario 2: Memory Caching

Q FrozenHot [EuroSys "23]

» Speeding up hit path by removing cache management

FC

Most hits on frozen cache (FC)

* No list management | DC
* No locks
* Faster hash table / \ \

g

(J SpanDB [FAST21]
» Implemented within RocksDB

U Distributing LSM-tree based KV data

» Large and slow disk for capacity
» Small and fast disk for speed

(J Automatic tree layer placement

» Adaptive to partition sizes and workloads

DRAM

High-Concurrency Scenario 3: KV Stores

@Async request processing

(256 GB, $1800) @

Immutable MTs

Mutable MT

File system

OS page cache

SpanDB TopFS
SPDK cache

» Allow hybrid storage for cost-effectiveness

NVMe SSD 2TB, 500k IOPS

NVMe SSD

SATA SSD

500GB,
1M IOPS,
2GB/s BW

5TB, 3GB/s BW

5 Storage and I/O Not Efficiently Shared

a
>

a
>

» Extended I/O hierarchy for Al workloads

24

P
‘1:'43:::? Al and LLM Age: GPU as a Supercomputer

Control [Control Control }

=5 cycles Constant Cache Constant Cache Constant Cache
=5 cycles :;::‘:y L1 Cache ;:::‘:y L1 Cache ;::":fy L1 Cache
L2 Cache
Global memory (HBM)
=500 cycles Global Memory

"~ Much larger/slower

NVIDIA H100 Memory Hierarchy
Credit: Izzat El Hajj, HetSys Course: Lecture 4: GPU Memory Hierarchy (Spring 2023), Onur Mutlu Lectures

.
3% GPU Global Memory the New Disk?

 FlashAttention: optimization targeting long sequences
» Adopted by major LLM frameworks: PyTorch, Megatron, DeepSeek ...

FLASHATTENTION: Fast and Memory-Efficient Exact Attention
with IO-Awareness

Tri Dao’, Daniel Y. Fu', Stefano Ermon’, Atri Rudra*, and Christopher RéT

"Department of Computer Science, Stanford University
*Department of Computer Science and Engineering, University at Buffalo, SUNY

{trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu,
chrismre@cs.stanford.edu

June 24, 2022

Abstract

Transformers are slow and memory-hungry on long sequences, since the time and memory complexity
of self-attention are quadratic in sequence length. Approximate attention methods have attempted
to address this problem by trading off model quality to reduce the compute complexity, but often do
not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms [0O-
aware—accounting for reads and writes between levels of GPU memory. We propose FLASHATTENTION,

g

CPU/GPU-Side Storage Hierarchy (Capacity)

CPU (AMD EYPC 9654)

Resgister

L1 Cache 6MB

L2 Cache 96MB

L3 Cache 334MB

Main Memory 750GB

SSDs 4-32 TB

Aggregate capacity

GPU (H100)

Resgister

L1 Cache 33MB
L2 Cache 50MB

High Bandwidth Memory
80GB

“% CPUIGPU-Side Storage Hierarchy (Bandwidth)

CPU (E.g. AMD EYPC 9654) GPU (E.g. H100)
Resgister Resgister
L1 Cache A4TB/s L1 Cache 33TB/s
L2 Cache 12TB/s L2 Cache 12TB/s
L3 Cache 768GB/s
Main Memory
460GB/s e 3.35TB/s
SSDs

Aggregate bandwidth

g

“I10 Characteristics” of Transformer Components

Normalization Training & inference Balanced R-W Memory
GEMM Training & inference Mainly reads Compute > Memory
Attention Training & inference Mainly reads See table below
Dropout Training Balanced R-W Memory
Activation Function Training & inference Balanced R-W Compute > Memory
Long Training & prefill Compute > Memory
Short Training & prefill Compute > Memory
Long Decode Memory

Short Decode Compute > Memory

o
o

Good News: Storage-Friendly Access Patterns

 Large, sequential, read-heavy accesses
» Little random reads, relatively light writes
» Regular, predictable, collaborative data streaming
» Data content/precision could be manipulated!

J Many storage/HPC tricks apply
» Prefetching
» Tiling/Tiering

o
o

Bad News: High Efficiency Demands Large Space

J GPU MFU (Model FLOPS Utilization) relies on batch size

» Larger batches -> higher parallelism, more data reuse
» Current leading frameworks get <50% of GPU peak TFLOPS

1 Batch size limited by HBM size

» Especially w. long-sequence attention in decoding

'i‘-.-r.

>+ Can CPU-Side Memory Help?

CPU (E.g. AMD EYPC 9654)

Resgister
L1 Cache 44TB/s
L2 Cache 12TB/s
L3 Cache 768GB/s
PCle 5.0 x16
Main Memory 460GB/s <
<SDs 64GB/s

Aggregate bandwidth

GPU (E.g. H100)

Resgister
L1 Cache 33TB/s
L2 Cache 12TB/s

HBM 3.35TB/s

p
3'.:‘5:’4? Recent Work on Reducing KV-Cache I/O Demands

Q Parameter/KV Cache offloading

> FlexGen [ICML23]
» MoE-Lightning [ASPLOS25]

d KV Cache Compression
> Keyformer [MLsys24]

1 Quantization
> ZipCache [NeurlPS24]

] Window attention
> StreamingLLM [ICLR24]

'::‘Q.*
& >2 Closing Remarks
O Shared nature makes storage challenging and interesting

» Contention and interference, but also higher throughput and utilization

» Joint CPU-GPU storage hierarchy creates more scenarios for sharing/coordination
 HBM too small to saturate GPU cores, too fast for DRAM to stream

1 Education also challenged by new modes of knowledge sharing
» Al practitioners need to know systems basics
» CS students need to retain focus/courage in system building

	Slide 1: I/O Coordination for Better Resource Sharing From HPC to AI Storage
	Slide 2: Decades Ago
	Slide 3: Compute Resources Shared Then
	Slide 4: And Again Now
	Slide 5: Sharing-Friendly Hardware Platforms
	Slide 6: Implications of Pervasive Resource Sharing
	Slide 7
	Slide 8
	Slide 9: Challenging Layer 1: Shared Cache
	Slide 10: Cache Partitioning in Commodity Multicores
	Slide 11: Challenging Layer 2: Supercomputer Shared Storage
	Slide 12
	Slide 13: Bottleneck, Contention Point, and Under-Utilization
	Slide 14
	Slide 15: Another Layer in Pyramid: Remote PM
	Slide 16: Cloud-Native DB on Disaggregated PM
	Slide 17: “Storage Container” All the Way
	Slide 18: Sample Memory/Cache Performance
	Slide 19: High-Concurrency Scenario 1: Graph Random Walk
	Slide 20: Challenge: Slow Random Memory Accesses
	Slide 21: FlashMob [SOSP21]: Cache-speed Graph Random Walk
	Slide 22: High-Concurrency Scenario 2: Memory Caching
	Slide 23: High-Concurrency Scenario 3: KV Stores
	Slide 24
	Slide 25: AI and LLM Age: GPU as a Supercomputer
	Slide 26
	Slide 27: CPU/GPU-Side Storage Hierarchy (Capacity)
	Slide 28
	Slide 29
	Slide 30: Good News: Storage-Friendly Access Patterns
	Slide 31: Bad News: High Efficiency Demands Large Space
	Slide 32
	Slide 33: Recent Work on Reducing KV-Cache I/O Demands
	Slide 34

