Quantitative Analysis of Storage Requirement for Autonomous Vehicles

Yuxin Wang, William He, Ruijun Wang and Weisong Shi

@The CAR Lab

July 8, 2024 HOTSTORAGE'24

Western Digital

Motivation

Image source: Vehicle as a Mobile Computing Platform

Motivation

2

Bermuda Image source: wikipedia

Motivation

- Computation Platform: Long-term historical data e.g., AV Developers 3rd-party applications
- AVBlackBox: Short-term historical data e.g., Insurance company AV developers

- 1. What and how much data will be generated by autonomous vehicles?
- 2. How to build storage system for autonomous vehicles?
 - a. Write
 - b. Read
- 3. How to store them?

HOTSTORAGE'24

Our Contribution

- *Mathematical models* for sensor data rates
- Comprehensive evaluation in *multiple driving scenarios*, e.g., city, rural area, and highway
- A storage solution AVStore
 - The detailed *storage requirement* based on using platform and sensor sets
 - Storage system *architecture* in autonomous vehicle

Outline

- Problem Statement
- Our Approach
- Evaluation Results
- Discussion

HydraU – An AV Platform

Data Type

Vehicle Status: CAN bus data

Environment: Sensor data

Sensor Data Model

8

• CAN BUS Data

Maximum bit rate broadcast by each ECU is up to 1 million bits per second

<u>RGB Camera</u>

 $DataRate_{RGB}(bytes/s) = \frac{1byte}{8bit} \times H \times V \times BPP \times FPS$

• <u>3D LiDAR</u>

 $DataRate_{LiDAR}(bytes/s) = N \times B(bytes)$

• <u>Radar</u>

 $DataRate_{Radar}(bytes/s) = f \times N_p \times B(bytes)$

 $f = \frac{1}{CycleTime}$ $N_p = \frac{FOV Azimuth}{Azimuth Resolution} \times \frac{FOV Elevation}{Elevation Resolution}$

• <u>GNSS</u>

 $DataRate_{GNSS}(bytes/s) = r_{update} \times D(bytes)$

All parameters could be found in the product user-manual or datasheet

Parameters Explanation

H: horizontal number of pixels *V*: vertical number of pixels *BPP*: pixel bit depth *FPS*: frame rate per second *N*: number of returned points *B*: bit depth per point *f*: scanning rate *N_p*: the number of points that can be resolved within the radar's field of view (FOV) *r_{update}*: the number of messages it generates

per second

D: constant data size for each message

Camera Model

Data Rate(byte/s) = 1 byte / 8 bit × H × V × BPP × FPS

H: horizontal number of pixelsV: vertical number of pixelsBPP: pixel bit depthFPS: frame rate per second

 Example1: <u>FL2-14S3M-C</u> used in KITTI (4 cameras)
 Data Rate = 1384 x 1032 x 12 x 15 / 8
 = ~ 32MB/s = ~2.7TB/day

Example2: <u>Basler ace</u> used in our platform (7 cameras)
 Data Rate = 1920 x 1200 x 8 x 5 / 8

 = 11.52MB/s = ~0.995TB/day

Resolution	1384 x 1032		
Frame Rate	15 FPS		
Megapixels	1.4 MP		
Chroma	Mono		
Sensor Name	Sony ICX267		
Sensor Type	CCD		
Readout Method	Global shutter		
Sensor Format	1/2"		
Pixel Size	4.65 µm		
Lens Mount	C-mount		
ADC	12-bit		

CAN Bus Data

10

1585

HOTSTORAGE'24

A controller area network (CAN) is a vehicle bus standard designed to enable efficient communication primarily between electronic control units (ECUs) Classical CAN baud rate: up to 1 million bits per second between each ECU

LiDAR Model

Data Rate (bytes/s) = N × B

N: number of returned points B: bit depth per point

Data Format

The **LAS** (LIDAR Aerial Survey) file format is a widely used binary file format designed to store 3D point cloud data collected by LiDAR.

• Example (Hesai Pandar 64, dual return mode

Data Rate = 2304000 × 26 = 59.904 *MB/s*

Data Points Generated	Single Return:	1,152,000 points/sec	
	Dual Return:	2,304,000 points/sec	

int offset = 0;

offset = addPointField(ros_msg,	"x", 1, sen	or_msgs::msg::PointField::FLOAT32, offset);
offset = addPointField(ros_msg,	"y", 1, sen	or_msgs::msg::PointField::FLOAT32, offset);
offset = addPointField(ros_msg,	"z", 1, sen	or_msgs::msg::PointField::FLOAT32, offset);
offset = addPointField(ros_msg,	"intensity"	<pre>1, sensor_msgs::msg::PointField::FLOAT32, offset);</pre>
offset = addPointField(ros_msg,	"ring", 1,	ensor_msgs::msg::PointField::UINT16, offset);
offset = addPointField(ros_msg,	"timestamp"	<pre>1, sensor_msgs::msg::PointField::FLOAT64, offset);</pre>

GPS Model

Data Rate(bytes/s) = r_{update} × D (bytes)

r_{update}: the number of messages it generates per second D: constant data size for each message

- Data Format: GPS <u>NMEA 0183 Sentences</u>, maximum length of each sentences is 82 characters/bytes (data bits=8)
- Example (<u>OEM7 GNSS kit</u>) Topic: novatel/oem7/gps Frequency: 50Hz D: 394 bytes
 Data Rate = 50 * 394 = 19.7 KB/s

common header: 6 Oem7MessgeShortHeaderMem: 12 BESTGNSSPOSMem: 72 BESTPOSMem: 72 BESTVELMem: 44 PPPPOSMem:72 TERRASTARINFOMem:52 TERRASTARSTATUSMem:20 TIMEMem:44

Radar Model

- Data Rate(byte/s) = $f \times N_p \times B$ (bytes)
- f = 1 / CycleTime
- $N_p = FOV Azimuth / Azimuth Resolution \times FOV Elevation / Elevation Resolution$
- *f*: scanning rate
- N_p: the number of points that can be resolved within the radar's field of view (FOV) B: bit depth per point
- Example: <u>ARS430</u> record XYZ and density, point_step=16 bytes

FOV Azimuth	[°]	-9 +9 (FRS) -60 +60 (NR
Azimuth Beam Width (3dB)	[°]	2.2 (FRS)
Azimuth Accuracy	[*]	0.1 (FRS)
Azimuth Resolution	[*]	1.6 (FRS)
Antennas	-	12
Sensitivity (Min. RCS @ X M)	[m²]	10 @ 200m
Cycle Time	[ms]	75

HOTSTORAGE'24

Outline

- Problem Statement
- Our Approach
- Evaluation Results
- Discussion

CÂR

Experiment Design

- AV Platform:
 - 2018 Lincoln MKZ
 - CAN bus: drive-by-wire system
 - LiDAR: 1 Hesai Pandar64 on top, 2 VLP-16 on side
 - Camera: 7 Basler ace facing with different directions
 - GNSS/GPS: 2 Novatel OEM7
- Evaluation scenarios:
 - rural area with 15 miles per hour (MPH)
 - rural area with 25 miles per hour (MPH)
 - urban with varying speeds
 - highway with varying speeds

Experiment Result - Sensors

16

Table 1 : Error for each sensor model.

Sensor	Error Mean	Error Max
RGB Camera	0.962%	2.454%
GNSS	0.699%	1.319%
VLP 16	2.230%	3.734%
Pandar 64	0.203%	0.569%

Fig. 1 : Data rate for each sensor.

Storage Requirement

17

Туре	Memory Access Requirements	Storage Size (collected)	Storage Size (math model)	
RGB Camera (Basler ace)	11.530MB/s	1.001TB/day	0.996TB/day	How do we store
3D LiDAR (VLP16)	12.788MB/s	1.105TB/day	1.131TB/day	data onboard in
3D LiDAR (Pandar64)	60.009MB/s	5.185TB/day	5.176TB/day	real-time?
GNSS (Novatel OEM7)	19.624KB/s	1.696GB/day	1.702GB/day	
CAN	217.833KB/s	18.821GB/day	-	
Total	166.915MB/s	14.424TB/day	14.432TB/day	
Vehicle Usage: Average Driving	Γime in the US(<u>ΑΑ</u> /	<u> 2023 report</u>): 60	.2mins/day	

HOTSTORAGE'24

AVStore Architecture

18

HOTSTORAGE'24

Outline

- Problem Statement
- Our Approach
- Evaluation Results
- Discussion

Discussion

Recap and Future Work

- **High Data Rate**: sensor data rate could reach tens to hundreds of MB/s (for one)
- **Context-agnostic:** CAN bus data rate and sensor data rate are not influenced by driving speed or the environment
- **Diversity**: different sensor has a very different data format

V.

Thank you!

yuxw@udel.edu

http://thecarlab.org

HOTSTORAGE'24

Literature Review

Field	Publications	Related Part Summary
	Flash Memory in the emerging age of autonomy. <i>Stephan Heinrich, 2017 (<u>Lucid Motors</u>)</i>	Some estimates on the raw sensor data generated by each type of sensor.
Industry	Storage Capacity Requirement for Autonomous Vehicles to Balloon Over 2TB in the Next Decade. <u><i>Counterpoint</i></u> <u><i>Technology Market Research</i></u> , 2019	The amount of data generated by the growing sensor system at each level of autonomy, and the corresponding rise in the amount of in-vehicle storage needed.
Academic	HydraSpace: Computational data storage for autonomous vehicles. <i>R. Wang et al.</i> 2020 (<u>doi</u>)	Proposed multi-layered storage architecture and practical compression algorithms to manage the sensor pipe data.
	Cybersecurity and Capacity Requirement for Data Storage of Autonomous Driving System. <i>I. Kim et al. 2022 (doi)</i>	Estimate storage requirement based on rough data bandwidth used from Lucid Motors Report.
	Data Storage System Requirement for Autonomous Vehicle. <i>I. Kim et al. 2022 (<u>doi</u>)</i>	Roughly estimate data storage capacity for L3 and L4 based on open autonomou vehicles dataset.

Appendix Table 1: CAN BUS data						
scenarios	Duration(s)	Size(MB)	# Message	Data Rate(KB/s)	Message Rate(#/s)	
	282	61.4	443849	217.730	1573.933	
Rural 15 MPH	264	57.5	415614	217.803	1574.295	
	274	59.6	431310	217.518	1574.124	
	199	43.3	313250	217.588	1574.121	
Rural 25 MPH	181	39.4	284570	217.680	1572.210	
	184	40.2	290496	218.478	1578.783	
	314	68.6	495588	218.471	1578.306	
	395	86.0	621594	217.722	1573.656	
City	521	113.6	820624	218.042	1575.094	
	369	80.4	581395	217.886	1575.596	
	246	53.6	387164	217.886	1573.837	
Highway	229	50.0	361414	218.341	1578.227	
nignway	230	50.0	361728	217.391	1572.730	

Appendix Table 2: RGB camera (Balser ace) data					
scenarios	Duration(s)	Size(GiB)	# Message	Data Rate(MB/s)	Message Rate(#/s)
	253.389	2.7	1268	11.441	5.004
Rural 15 MPH	220.997	2.4	1106	11.661	5.005
	246.697	2.7	1235	11.752	5.006
	163.593	1.8	819	11.814	5.006
Rural 25 MPH	159.794	1.7	800	11.423	5.006
-	184.396	2.0	923	11.646	5.006
	333.797	3.6	1670	11.580	5.003
	379.797	4.1	1900	11.591	5.003
City	516.400	5.5	2583	11.436	5.002
	364.395	3.9	1823	11.492	5.003
	241.597	2.6	1209	11.555	5.004
Uighway	237.794	2.6	1190	11.740	5.004
Highway	278.896	3.0	1396	11.550	5.005

Appendix Table 3: 3D LiDAR (VLP16) data					
scenarios	Duration(s)	Size(GiB)	# Message	Data Rate(MB/s)	Message Rate(#/s)
	258.462	3.1	5126	12.878	19.832
Rural 15 MPH	218.769	2.6	4338	12.761	19.829
	247.106	2.9	4901	12.601	19.834
	161.174	1.9	3197	12.658	19.836
Rural 25 MPH	157.493	1.9	3124	12.954	19.836
	184.787	2.2	3665	12.784	19.834
	334.296	4.0	6630	12.847	19.833
	387.76	4.6	7690	12.737	19.832
City	525.977	6.2	10431	12.656	19.832
	373.163	4.4	7401	12.661	19.833
	249.781	3.0	4954	12.896	19.833
Highway	224.974	2.7	4462	12.886	19.833
nignway	249.125	3.0	4941	12.930	19.833

Appendix Table 4: 3D LiDAR (Hesai Pandar64) data					
scenarios	Duration(s)	Size(GiB)	# Message	Data Rate(MB/s)	Message Rate(#/s)
	225.987	12.6	2261	59.867	10.005
Rural 15 MPH	238.188	13.3	2383	59.956	10.005
	230.892	12.9	2310	59.990	10.005
	207.305	11.6	2074	60.083	10.005
Rural 25 MPH	149.995	8.4	1501	60.132	10.007
	209.983	11.7	2101	59.827	10.006
	334.895	18.7	3350	59.956	10.003
	384.288	21.5	3844	60.073	10.003
City	521.770	29.1	5217	59.884	9.999
	368.695	20.6	3688	59.993	10.003
	245.958	13.8	2463	60.245	10.014
Highway	273.202	15.3	2733	60.132	10.004
Highway	245.462	13.7	2456	59.929	10.006

Appendix Table 5: GNSS (Novatel OEM7) data					
scenarios	Duration(s)	Size(MiB)	# Message	Data Rate(KB/s)	Message Rate(#/s)
	262.498	4.9	13126	19.574	50.004
Rural 15 MPH	220.780	4.1	11036	19.473	49.986
	246.579	4.6	12330	19.561	50.004
	166.421	3.1	8322	19.532	50.006
Rural 25 MPH	159.301	3.0	7966	19.747	50.006
	184.339	3.5	9218	19.909	50.006
	334.198	6.3	16711	19.766	50.003
	390.617	7.3	19532	19.596	50.003
City	535.417	10.0	26773	19.584	50.004
	377.198	7.1	18861	19.737	50.003
	252.798	4.7	12641	19.495	50.004
Highway	227.895	4.3	11394	19.785	49.997
підпіаў	140.241	2.6	7013	19.440	50.007

