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Introduction

O Deep Learning (DL) is widely used
* Training is important for good accuracy

O DL training has intense requirements for storage, CPUs, and GPUs.
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Problem Statement

GPUs are becoming

~ — = increasingly fast!
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« Training data too large to fit in local storage TEEE
» For example, Openlmages totals 18TB.
* Need to be fetched from remote storage

What if remote data fetch rate < GPU compute rate?

GPU underutilized!
Longer training time!
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Existing Solutions

O We want to reduce data traffic from remote storage to compute node

O Local cache
= Selectively cache data in local storage or memory

= Can be limited by local storage/memory capacity ‘
- Datasets are still increasing in size

O Store preprocessed data
= Store preprocessed data in remote storage for repeated use

= Risks compromising training accuracy ‘
- Online preprocessing is important for training accuracy

= Data size might even increase after preprocessing
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Opportunities in Data Preprocessing

O Many samples’ sizes decrease in the middle of preprocessing

O Case study: ImageNet classification
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Solution: Preprocessing Offloading

O Solution: Selectively offload preprocessing steps to storage side

Offload to near storage Keep on compute node
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Challenges in Preprocessing Offloading

O Finding |1: NOT all samples can benefit from preprocessing offloading

No offloading
Keep ALL preprocessing on compute node
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Challenges in Preprocessing Offloading

O Finding 2: Different datasets/samples benefit differently from offloading

O Case studies:
" ImageNet
- 26% samples can benefit
* Openlmages
- 76% samples can benefit
= larger raw images benefit more
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Challenges in Preprocessing Offloading

O Finding 3: Offloading introduces CPU overhead to storage node
= Storage cluster usually has limited CPU capabilities
* Tradeoff between traffic reduction vs. CPU overhead

O Offloading efficiency:

= Ratio of size reduction to offloaded preprocessing time

. . . . . CDF for Ratio of S I
= Different samples have different offloading efficiency SO Rl pidbiosit o
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Limitations of Prior Offloading Works

O We need a fine-grained, data-selective offloading approach
= Data selective: carefully select which samples to offload based on
dataset’s characteristics.

O Existing preprocessing offloading works

" Focuses on CPU bottlenecks
- Offload preprocessing to remote CPU workers

- Not designed to reduce remote data traffic
Operation  Data Data  To Near

Selective  Partial Selective Storage
tf.data svc —_ - —

= NOT data selective GoldMiner | v/

. FastFlow -
- Coarse-grained cedar v

- Fail to exploit heterogeneous size behavior of samples

I N
Ll
L1




ﬁ THE UNIVERSITY OF

& CHICAGO SOPHON @ HotStorage '24

Our Solution: SOPHON

O SOPHON: Sclectively Offloading Preprocessing with Hybrid Operations
Near-storage

" Per-sample per-operation granularity
- First data-selective offloading for DL training
= Minimizes remote data traffic
= Balances offloaded CPU overhead and traffic reduction

Operation  Data Data  To Near

Selective  Partial Selective Storage
tf.data svc - - — -
GoldMiner 4 — — —
FastFlow — v — -
cedar v - - —
SOPHON v v 4 v

Table 1. Existing Offloading [32-35] vs. SOPHON.
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SOPHON Design

O Lightweight two-stage profiler

O Per-sample offloading decision engine

————————————————————————————————————————
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SOPHON: Two-Stage Profiler

O Stage I:ldentify bottlenecks (Inspired by DataStall@VLDB ’21)

" Throughput measurement

- GPU throughput @ e‘ Stage 1: Identify Bottleneck ]
- 1/O throughput '9": | 1f v0-Bound
- CPU throughput Q QL Stage 2: Per-sample Measurement ’

= Proceed only if I/0-bound Per-sample Metrics

\ 4

O[ Decision Engine J

O Stage 2:Per-sample profiing
" Measure time and size per sample per preprocessing step
= Online measurement during first epoch without offloading
= Assumes homogeneous CPUs
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SOPHON: Offloading Policy

O Compute offloading efficiency for each sample
= Ratio of size reduction to offloaded CPU preprocessing time

O Sort samples by offloading efficiency
* Prioritize samples with higher offloading efficiency

(c) CDF for Ratio of Sample

O Pick samples for offloading and update throughput until: , Size Reduction to Prep Time
= |/O is no longer bottleneck, or .
O 0.5 -
= All samples with positive efficiency have been picked °
0.0 T T
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O Balances traffic reduction and offloaded CPU overhead _ , :
Size Reduction / Prep time (MB/s)
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Implementation & Experiment Setup

O Implemented on top of PyTorch O Limited bandwidth

O Small-scale experiments to mimic

Downscaled to 500Mbps

real-world scenarios QO Five offloading policies

O Two nodes
= A GPU (RTX6000) node
= A storage node

O Benchmarks: n
= Openlmages (12GB subset)
" [mageNet (| 1GB subset) -

No-Off: offload nothing
All-Off: offload everything

FastFlow: designed for CPU
bottlenecks

Resize-Off: offload until
RandomCropResize

SOPHON
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Evaluation: Ample CPUs on Storage

Q : Baseline

No-Off 0 All-Off l FastFlowll

. . Resize-OffC0 SOPHONM
O All-Off: Longest training time

= Many samples become larger after all prep w1200 (a) Epoch
£ 800 Time
O FastFlow: choose to offload nothing o 400
5 i
= Coarse-grained and detect All-Off is bad u% . [h:.
q . Openlmages ImageNet
' — 60 w
. for Openlmages @) & 40 (b)ITDatf?
~ -1 rafrfic
= |.3x increase for ImageNet @@ i

O SOPHON:
= 2.2x reduction for Openlmages @
= |.2x reduction for ImageNet @
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Evaluation: Limited CPUs on Storage

: i Openlmages No-Of# Al-Off A FastFlow
d : Baseline p g NoOH ALOMA Fas

O All-Off: Longest training time @800 (a) Epoch Time
. 600 \
= Even longer time when <2 cores due to CPU bottleneck £ \>
= 400 -
c
. [ — e
0 FastFlow: choose to offload nothing 5200"M
0 1 | | 1 | |
a : 0 1 2 3 4 5
Remote Prep CPU cores #
= |east traffic BUT longer training time
30
= Can cause CPU bottleneck on storage node = (b) Data Traffic
O ool A
= 20
0 SOPHON: =
o ) E 10_. % 2 3 % % %
= Least training time @ = T,
8 0 1 1 1 1 1 1
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Remote Prep CPU cores #
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Conclusion & Future Work

O SOPHON: Sclectively Offloading Preprocessing with Hybrid Operations
Near-storage for DL training

= Two-stage profiler to collect essential metrics

= Per-sample offloading decision engine to balance traffic reduction and
CPU overhead

O Future work:
= Selectively compress preprocessed data
= Extend support to heterogeneous CPUs
= Study more DL workloads
= Conduct more realistic evalutions
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Thanks!

Q&A



