A Selective Preprocessing Offloading Framework for Reducing Data Traffic in DL Training

Meng Wang, Gus Waldspurger,

Swaminathan Sundararaman

Introduction

- Deep Learning (DL) is widely used
 - Training is important for good accuracy
- DL training has intense requirements for storage, CPUs, and GPUs.

Problem Statement

- Training data too large to fit in local storage
 - For example, OpenImages totals 18TB.
- Need to be fetched from remote storage

What if remote data fetch rate < GPU compute rate? GPU underutilized!

Longer training time!

Existing Solutions

- We want to reduce data traffic from remote storage to compute node
- Local cache
 - Selectively cache data in local storage or memory
 - Can be limited by local storage/memory capacity
 - Datasets are still increasing in size
- Store preprocessed data
 - Store preprocessed data in remote storage for repeated use
 - Risks compromising training accuracy
 - Online preprocessing is important for training accuracy
 - Data size might even increase after preprocessing

Opportunities in Data Preprocessing

5

- Many samples' sizes decrease in the middle of preprocessing
- Case study: ImageNet classification

Solution: Preprocessing Offloading

Solution: Selectively offload preprocessing steps to storage side

Challenges in Preprocessing Offloading

Finding I: NOT all samples can benefit from preprocessing offloading

Challenges in Preprocessing Offloading

- Finding 2: Different datasets/samples benefit differently from offloading
- Case studies:
 - ImageNet
 - 26% samples can benefit
 - OpenImages
 - 76% samples can benefit
 - Larger raw images benefit more

Challenges in Preprocessing Offloading

- □ Finding 3: Offloading introduces CPU overhead to storage node
 - Storage cluster usually has limited CPU capabilities
 - Tradeoff between traffic reduction vs. CPU overhead
- Offloading efficiency:
 - Ratio of size reduction to offloaded preprocessing time
 - Different samples have different offloading efficiency

Limitations of Prior Offloading Works

- We need a fine-grained, data-selective offloading approach
 - **Data selective**: carefully select which samples to offload based on dataset's characteristics.
- Existing preprocessing offloading works
 - Focuses on CPU bottlenecks
 - Offload preprocessing to remote CPU workers
 - Not designed to reduce remote data traffic

			Selective	Partial	Selective	Storage	
_	NOT data selective	tf.data svc	_	_			2
-		GoldMiner	~	—	_	_	
	 Coarse-grained 	FastFlow	_	~	—	-	
		cedar	~	_	_		

- Fail to exploit heterogeneous size behavior of samples

Our Solution: SOPHON

- SOPHON: <u>Selectively Offloading Preprocessing with Hybrid Operations</u>
 <u>N</u>ear-storage
 - Per-sample per-operation granularity
 - First data-selective offloading for DL training
 - Minimizes remote data traffic
 - Balances offloaded CPU overhead and traffic reduction

	Operation	Data	Data	To Near
	Selective	Partial	Selective	Storage
tf.data svc				
GoldMiner	~	_	_	
FastFlow	_	~	—	-
cedar	~	_	<u> </u>	
SOPHON	~	~	v	 ✓

Table 1. Existing Offloading [32-35] vs. SOPHON.

SOPHON Design

E UNIVERSITY OF

- Lightweight two-stage profiler
- Per-sample offloading decision engine

SOPHON: Two-Stage Profiler

- Stage I: Identify bottlenecks (Inspired by DataStall@VLDB '21)
 - Throughput measurement
 - GPU throughput
 - I/O throughput
 - CPU throughput
 - Proceed only if I/O-bound
- **Stage 2**: Per-sample profiling
 - Measure time and size per sample per preprocessing step
 - Online measurement during first epoch without offloading
 - Assumes homogeneous CPUs

SOPHON: Offloading Policy

- Compute offloading efficiency for each sample
 - Ratio of size reduction to offloaded CPU preprocessing time
- Sort samples by offloading efficiency
 - Prioritize samples with higher offloading efficiency
- Pick samples for offloading and update throughput until:
 - I/O is no longer bottleneck, or
 - All samples with positive efficiency have been picked
- Balances traffic reduction and offloaded CPU overhead

Implementation & Experiment Setup

- Implemented on top of PyTorch
- Small-scale experiments to mimic real-world scenarios
- Two nodes
 - A GPU (RTX6000) node
 - A storage node
- Benchmarks:
 - OpenImages (12GB subset)
 - ImageNet (IIGB subset)

Limited bandwidth

- Downscaled to 500Mbps
- Five offloading policies
 - No-Off: offload nothing
 - All-Off: offload everything
 - FastFlow: designed for CPU bottlenecks
 - Resize-Off: offload until RandomCropResize
 - SOPHON

Evaluation: Ample CPUs on Storage

- No-Off: Baseline
- All-Off: Longest training time
 - Many samples become larger after all prep
- FastFlow: choose to offload nothing
 - Coarse-grained and detect All-Off is bad
- **Resize-Off**:
 - 2x reduction for OpenImages 🙂

- 1.3x increase for ImageNet
- SOPHON:
 - 2.2x reduction for OpenImages
 - 1.2x reduction for ImageNet

Evaluation: Limited CPUs on Storage

- □ No-Off: Baseline
- □ All-Off: Longest training time
 - Even longer time when <2 cores due to CPU bottleneck</p>
- □ FastFlow: choose to offload nothing
- □ Resize-Off:
 - Least traffic **BUT** longer training time
 - Can cause CPU bottleneck on storage node
- □ SOPHON:
 - Least training time

All-Off

FastFlow

OpenImages No-Off

Conclusion & Future Work

- SOPHON: <u>Selectively Offloading Preprocessing with Hybrid Operations</u>
 <u>N</u>ear-storage for DL training
 - Two-stage profiler to collect essential metrics
 - Per-sample offloading decision engine to balance traffic reduction and CPU overhead
- Future work:
 - Selectively compress preprocessed data
 - Extend support to heterogeneous CPUs
 - Study more DL workloads
 - Conduct more realistic evalutions

Thanks!

