
Rethinking Erasure-Coding Libraries in the Age of 
Optimized Machine Learning

Jiyu Hu, Jack Kosaian, K. V. Rashmi
Computer Science Department

1



Background of Storage Systems

• Failures are common in large scale data centers
• Adopts redundancy for fault-tolerance
• Erasure code achieves the same redundancy level 

as replication with lower storage overhead

2



Background of Erasure-Coding

• A tool from the domain of coding theory to achieve redundancy
• Encoding:

§ party units generated as linear combination of data units
§ [n, k] code: n code unit, k data unit, r=(n-k) parity unit

a b c

Encode

Data Unit Parity Unit

3

n=5, k=3, r=2

a+b+c a+2b+3c



ca

Background of Erasure-Coding

4

b a+b+c a+2b+3c

Decode

Data Unit Parity Unit

• A tool from the domain of coding theory to achieve redundancy
• Decoding (recovery): withstand up to r failures

§ Lost data units are linear combinations of remaining data 
and parity units

n=5, k=3, r=2



Background of Erasure-Coding

5

• Each parity unit can be viewed as linear combination of k data 
units

• Process can be viewed as matrix dot product between a 
generator matrix and data matrix

• The calculation is via finite-field arithmetic



Optimizations in Implementing Erasure-Coding
Algorithmic Optimizations
• Bitmatrix erasure coding. 

Convert expensive finite-field 
arithmetic into bitwise AND and 
XOR

• Generator Matrix with fewer 
number of 1s

• Reschedule matrix calculation. 
Find repetitive calculation 
patterns in the bitmatrix operation 
to minimize total number of XORs

• Vectorization

• Optimize memory access 
patterns

• Different hardware platforms 
(e.g. GPU, FPGA)

System-level optimizations

6

Coding Theory Computer Systems



Difficulty of Developing Erasure-Coding Libraries

7

• Requires knowledge in both EC mathematical underpinnings 
and hardware features

• Hardware is becoming increasingly heterogeneous

• Growth of accelerator-native applications

• Developing EC libraries will be even more challenging in the 
future



Desirable Properties of Erasure-Coding Libraries

8

• Require less development and maintenance effort

• Can run with high performance on a variety of hardware

• Can be easily adapted to future hardware architectures



EC via Machine Learning Libraries

9



Idea: EC via Machine Learning Libraries

10

• ML libraries are well-developed and actively maintained

• ML libraries are optimized to achieve high performance on 
various hardware platforms

• ML libraries are frequently updated to best exploit new 
hardware features



EC via Machine Learning Libraries

(Unoptimized) GEMM

(Unoptimized) bitmatrix erasure code encoding

11

• Erasure codes have a structure closely matching General Matrix 
Multiplication (GEMM)



Implementation using TVM – TVM-EC

12

• TVM[1]: an open-source framework for optimizing neural 
networks

§ Generate high-performance kernels for multiple hardware 
platforms

§ Performs learning-based autotuning based on underlying 
hardware

[1]: Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind 
Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation 
(OSDI 18).



Implementation using TVM – TVM-EC

13

• Procedure
§ Declare placeholder variables
§ Define bitmatrix computation
§ Autotune on specific hardware
§ Compute
• Convert the data matrix into bitmatrix
• Bitmatrix multiplication with generator matrix



Evaluation

14

• Platform: eight-core Intel Xeon at 2.0 GHz with 64 GB of 
memory

• Baselines:
• Uezato: state-of-the-art hand-optimized (research) EC library
• Intel ISA-L: production-grade EC library optimized for CPUs



Evaluation

15

• Effect of parameter r
• TVM-EC shows better relative performance with larger 

parameter r
• Up to 1.75⨉ throughput with TVM-EC when r = 4 compared to 

Uezato and ISA-L



Discussion

16

• Integration Effort
§ ML libraries in high-level languages, storage systems in low-level 

languages
§ Modifications might be required for the target storage system
• ML-library-specific data structure
• Change data layout for faster data retrieval for the EC library

• Potential limitations
§ EC specific (algorithmic) optimizations are hard to apply
§ GEMM-like optimizations may lead to higher CPU utilization



• Developing optimized EC libraries is hard
§ Understanding of mathematical underpinnings and hardware features
§ High performance on different hardware platforms
§ Frequent updates to include new hardware features

• Presented a case for automating development of EC libraries 
using ML libraries
§ Eases the development and maintenance effort
§ Feasible due to similar mathematical operations performed

• Implementation using TVM: TVM-EC

• Evaluation comparing to state-of-the-art EC libraries
§ Achieves up to 1.75⨉ performance benefit over state-of-the-art EC 

libraries

Conclusion

17



• Explore other classes of codes

• More full-pledged evaluation
§ Different r and w parameters
§ CPU utilization comparison

• Investigate the effect of learning-based tuning

• Develop prototypes on more varieties of hardware

• Integrate our prototypes into real storage systems

Future Work

18Jiyu Hu: jiyuh@alumni.cmu.edu


