Rethinking Erasure-Coding Libraries in the Age of Optimized Machine Learning

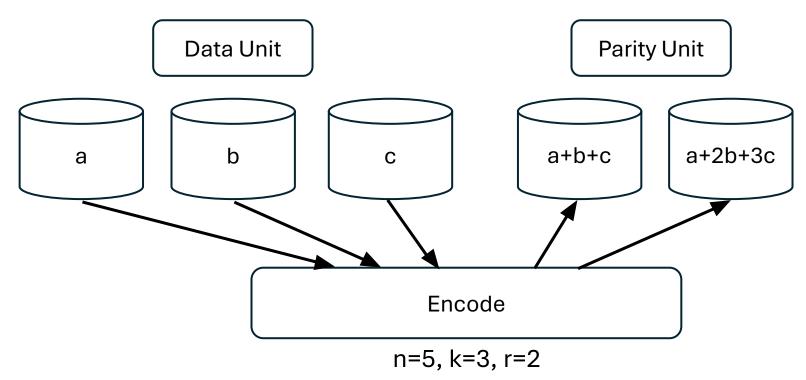
Jiyu Hu, Jack Kosaian, K. V. Rashmi Computer Science Department **Carnegie Mellon University**

Background of Storage Systems

- Failures are common in large scale data centers
- Adopts redundancy for fault-tolerance
- Erasure code achieves the same redundancy level as replication with lower storage overhead

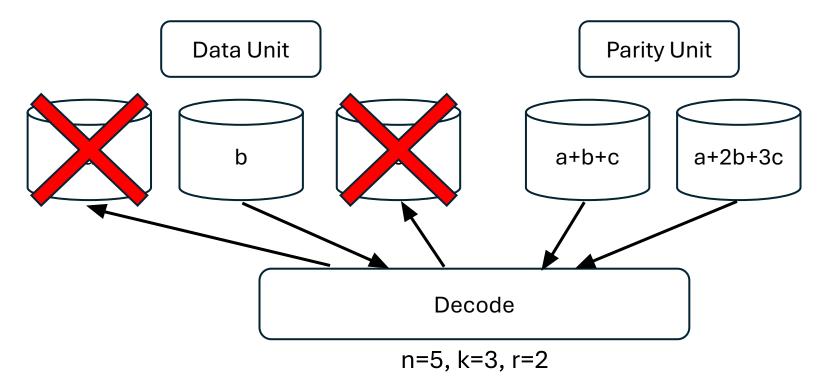
Background of Erasure-Coding

- A tool from the domain of coding theory to achieve redundancy
- Encoding:
 - party units generated as linear combination of data units
 - [n, k] code: n code unit, k data unit, r=(n-k) parity unit



Background of Erasure-Coding

- A tool from the domain of coding theory to achieve redundancy
- Decoding (recovery): withstand up to r failures
 - Lost data units are linear combinations of remaining data and parity units



- Each parity unit can be viewed as linear combination of k data units
- Process can be viewed as matrix dot product between a generator matrix and data matrix
- The calculation is via finite-field arithmetic

Optimizations in Implementing Erasure-Coding

Algorithmic Optimizations

- Bitmatrix erasure coding.
 Convert expensive finite-field arithmetic into bitwise AND and XOR
- Generator Matrix with fewer number of 1s
- Reschedule matrix calculation. Find repetitive calculation patterns in the bitmatrix operation to minimize total number of XORs

Coding Theory

System-level optimizations

- Vectorization
- Optimize memory access
 patterns
- Different hardware platforms (e.g. GPU, FPGA)

Computer Systems

Difficulty of Developing Erasure-Coding Libraries

- Requires knowledge in both EC mathematical underpinnings and hardware features
- Hardware is becoming increasingly heterogeneous
- Growth of accelerator-native applications
- Developing EC libraries will be even more challenging in the future

Desirable Properties of Erasure-Coding Libraries

- Require less development and maintenance effort
- Can run with high performance on a variety of hardware
- Can be easily adapted to future hardware architectures

EC via Machine Learning Libraries

Idea: EC via Machine Learning Libraries

- ML libraries are well-developed and actively maintained
- ML libraries are optimized to achieve high performance on various hardware platforms
- ML libraries are frequently updated to best exploit new hardware features

EC via Machine Learning Libraries

• Erasure codes have a structure closely matching General Matrix Multiplication (GEMM)

```
for i in range(M):
    for j in range(N):
        for k in range(K):
            C[i, j] += (A[i, k] * B[k, j])
                      (Unoptimized) GEMM
for i in range(ec_r * ec_w):
    for j in range(ec_d):
        for k in range(ec_k * ec_w):
```

C[i, j] ^= (A[i, k] & B[k, j])

(Unoptimized) bitmatrix erasure code encoding

Implementation using TVM – TVM-EC

- TVM^[1]: an open-source framework for optimizing neural networks
 - Generate high-performance kernels for multiple hardware platforms
 - Performs learning-based autotuning based on underlying hardware

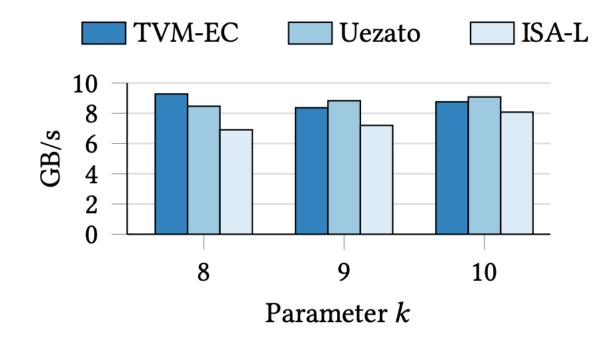
^{[1]:} Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).

Implementation using TVM – TVM-EC

- Procedure
 - Declare placeholder variables
 - Define bitmatrix computation
 - Autotune on specific hardware
 - Compute
 - Convert the data matrix into bitmatrix
 - Bitmatrix multiplication with generator matrix

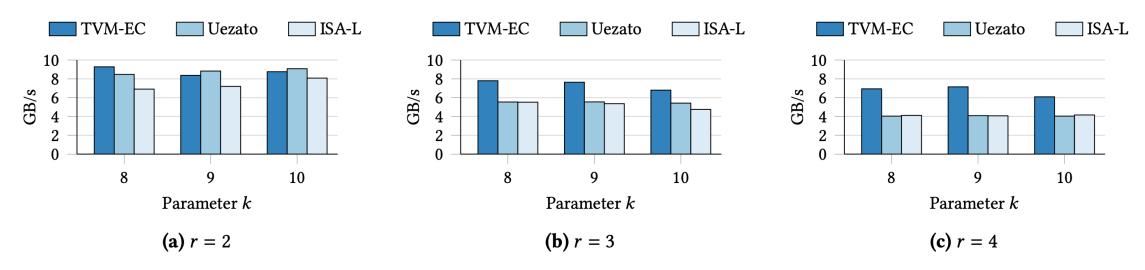
```
A = te.placeholder((M, K), name="A")
1
    B = te.placeholder((K, N), name="B")
2
    k = te.reduce_axis((0, K), name="k")
3
4
    # GEMM
5
    te.compute((M, N),
6
        lambda i, j: sum(A[i,k] * B[k,j], axis=k))
7
8
    # Bitmatrix erasure code
9
    xor = te.comm_reducer(lambda i,j: i ^ j, name="xor")
10
    te.compute((M, N),
11
        lambda i,j: xor(A[i,k] & B[k,j], axis=k))
12
```

- Platform: eight-core Intel Xeon at 2.0 GHz with 64 GB of memory
- Baselines:
 - Uezato: state-of-the-art hand-optimized (research) EC library
 - Intel ISA-L: production-grade EC library optimized for CPUs



Evaluation

- Effect of parameter r
- TVM-EC shows better relative performance with larger parameter r
- Up to 1.75× throughput with TVM-EC when r = 4 compared to Uezato and ISA-L



Discussion

- Integration Effort
 - ML libraries in high-level languages, storage systems in low-level languages
 - Modifications might be required for the target storage system
 - ML-library-specific data structure
 - Change data layout for faster data retrieval for the EC library
- Potential limitations
 - EC specific (algorithmic) optimizations are hard to apply
 - GEMM-like optimizations may lead to higher CPU utilization

Conclusion

- Developing optimized EC libraries is hard
 - Understanding of mathematical underpinnings and hardware features
 - High performance on different hardware platforms
 - Frequent updates to include new hardware features
- Presented a case for automating development of EC libraries using ML libraries
 - Eases the development and maintenance effort
 - Feasible due to similar mathematical operations performed
- Implementation using TVM: TVM-EC
- Evaluation comparing to state-of-the-art EC libraries
 - Achieves up to 1.75× performance benefit over state-of-the-art EC libraries

Future Work

- Explore other classes of codes
- More full-pledged evaluation
 - Different r and w parameters
 - CPU utilization comparison
- Investigate the effect of learning-based tuning
- Develop prototypes on more varieties of hardware
- Integrate our prototypes into real storage systems