Rethinking Erasure-Coding Libraries in the Age of
Optimized Machine Learning

Jiyu Hu, Jack Kosaian, K. V. Rashmi
Computer Science Department

Carnegie Mellon University

Background of Storage Systems

* Failures are common in large scale data centers

* Adopts redundancy for fault-tolerance

* Erasure code achieves the same redundancy level
as replication with lower storage overhead

Background of Erasure-Coding

* Atool fromthe domain of coding theory to achieve redundancy
* Encoding:

= party units generated as linear combination of data units

= [n, k] code: n code unit, k data unit, r=(n-k) parity unit

[Data Unit] [Parity Unit]

4>
C
{ Encode J

n=5, k=3, r=2

/e

Background of Erasure-Coding

* Atool fromthe domain of coding theory to achieve redundancy
* Decoding (recovery): withstand up to r failures
= | ostdata units are linear combinations of remaining data
and parity units

[Data Unit] [Parity Unit]

.y L3

a+2b+3c
[Decode]

n=5, k=3, r=2

Background of Erasure-Coding

* Each parity unit can be viewed as linear combination of k data
units

* Process can be viewed as matrix dot product between a
generator matrix and data matrix

* The calculation is via finite-field arithmetic

generator matrix data units parity units
A N A 4 A
ayq 812 .- Gy X11 X1p oo Xqig P11 P12 - Pi1g
rl|821 822 - F2k| W | Xyq Xpp ... Xpy = |P21 P22 --- Pogl|,
X31 X32 -+ X34k : P3,d
v\ar,1 ar,2 nee af,k/ X4,1 X4’2 - X4,d rpr,1 p,;z .o pr,dﬁ v
< > < >
k “xs d
Xk’1 Xk,2 . Xk,d v
< >

Optimizations in Implementing Erasure-Coding

Algorithmic Optimizations

Bitmatrix erasure coding.
Convert expensive finite-field
arithmetic into bitwise AND and
XOR

Generator Matrix with fewer
number of 1s

Reschedule matrix calculation.
Find repetitive calculation
patterns in the bitmatrix operation
to minimize total number of XORs

Coding Theory

System-level optimizations
* Vectorization

* Optimize memory access
patterns

 Different hardware platforms
(e.g. GPU, FPGA)

Computer Systems

Difficulty of Developing Erasure-Coding Libraries

* Requires knowledge in both EC mathematical underpinnings
and hardware features

* Hardware is becoming increasingly heterogeneous
* Growth of accelerator-native applications

* Developing EC libraries will be even more challenging in the
future

Desirable Properties of Erasure-Coding Libraries

* Require less development and maintenance effort
* Canrun with high performance on a variety of hardware

* Can be easily adapted to future hardware architectures

NI
EC via Machine Learning Libraries

ldea: EC via Machine Learning Libraries

ML libraries are well-developed and actively maintained

ML libraries are optimized to achieve high performance on
various hardware platforms

ML libraries are frequently updated to best exploit new
hardware features

10

EC via Machine Learning Libraries

Erasure codes have a structure closely matching General Matrix

Multiplication (GEMM)

for i in range(M):
for j in range(N):
for k in range(K):
Cli, j] += (ALi, k] * BLk, j1)

(Unoptimized) GEMM

for i in range(ec_r * ec_w):
for j in range(ec_d):
for k in range(ec_k * ec_w):
Cli, j1 *= (ALi, k1 & B[k, j1)

(Unoptimized) bitmatrix erasure code encoding

11

Implementation using TVM - TVM-EC

 TVMl: an open-source framework for optimizing neural
networks

= (Generate high-performance kernels for multiple hardware
platforms

" Performs learning-based autotuning based on underlying
hardware

[1]: Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18).

12

Implementation using TVM - TVM-EC

Procedure
Declare placeholder variables
Define bitmatrix computation
Autotune on specific hardware
Compute
Convert the data matrix into bitmatrix
Bitmatrix multiplication with generator matrix

O 00 NN N bR W =

L S
N = O

A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
k = te.reduce_axis((2, K), name="k")

GEMM
te.compute((M, N),
lambda i, j: sum(A[i,k] * B[k, jl, axis=k))

Bitmatrix erasure code
xor = te.comm_reducer(lambda i,j: i * j, name="xor")
te.compute((M, N),

lambda i, j: xor(A[Li,k] & B[k, jl, axis=k))

13

Evaluation

* Platform: eight-core Intel Xeon at 2.0 GHz with 64 GB of
memory

* Baselines:
 Uezato: state-of-the-art hand-optimized (research) EC library
* Intel ISA-L: production-grade EC library optimized for CPUs

B TVM-EC [JUezato []ISA-L
10

GB/s
SN B OND

|
8 9 10

Parameter k

14

Evaluation

GB/s
ON»&O\OO

Effect of parameterr
TVM-EC shows better relative performance with larger
parameterr

Up to 1.75X throughput with TVM-EC when r =4 compared to
Uezato and ISA-L

B TVM-EC [[JUezato [__]ISA-L B TVM-EC [[JUezato [__]ISA-L B TVM-EC [JUezato [__]ISA-L

GB/s
ON»PO\OO

GB/s
O[\D'-PO\OOS

Ml cikhe

Parameter k Parameter k Parameter k

@r=2 (b)r=3 (c)r=4

hhkk

!
10

15

Discussion

* |Integration Effort
= MLlibrariesin high-level languages, storage systems in low-level
languages
= Modifications might be required for the target storage system
* ML-library-specific data structure
* Change data layout for faster data retrieval for the EC library

* Potential limitations
= EC specific (algorithmic) optimizations are hard to apply
= GEMM-like optimizations may lead to higher CPU utilization

16

Conclusion

Developing optimized EC libraries is hard

= Understanding of mathematical underpinnings and hardware features
= High performance on different hardware platforms

= Frequent updates to include new hardware features

Presented a case for automating development of EC libraries

using ML libraries
= Easesthe development and maintenance effort
= Feasible due to similar mathematical operations performed

Implementation using TVM: TVM-EC

Evaluation comparing to state-of-the-art EC libraries
= Achieves up to 1.75X performance benefit over state-of-the-art EC
libraries 17

Future Work

* Explore other classes of codes

* More full-pledged evaluation
= Differentrand w parameters
= CPU utilization comparison

* |nvestigate the effect of learning-based tuning
* Develop prototypes on more varieties of hardware

* |ntegrate our prototypes into real storage systems

Jiyu Hu: jiyuh@alumni.cmu.edu

18

