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Interrupt: I/O Completion Method for Storage
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- Interrupt adds delay to the raw device latency

- Context switching and ISR are the primary 
sources of the additional delay
- Typically 2 µs or more

- The overhead varies by the type of storage

Interrupt driven I/O

4 KB random read latency Overhead (typ.)

HDD 2~20ms 0.001~0.0001%

TLC SSD 40~50 us 2~3%

ULL SSD 8~20 us 10~25%
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I/O Polling: An Alternative to Interrupts
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Polled I/O - Continuously checks the I/O completion queue 
until the I/O operation is complete

- No context switching, ISR, or CPU sleep and 
wakeup is required
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Potential gain

Interrupt-Driven I/O vs. Polled I/O
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Interrupt driven I/O Polled I/O
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Challenges Limiting the Adoption of I/O Polling
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- #1: Low popularity of ULL SSDs
- High cost per bit
- Manufacturers are winding down their ULL SSD businesses

- #2: Limited support of Linux
- Currently, the Linux polled I/O path is only accessible via io_uring
- Direct sync I/O has been removed since kernel 5.19
- No support for buffered I/Os and memory mapped I/Os
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Challenge #1: Finding Alternatives to ULL SSDs
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- Consider DRAM as an alternative to ULL SSDs:
- DRAM is much faster than ULL SSDs
- Potential gain from using I/O polling should be greater as well

What about DRAM? ? ?

4 KB random read latency Potential gain

HDD 2~20ms 0.001~0.0001%

TLC SSD 40~50 us 2~3%

ULL SSD 8~20 us 10~25%
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Challenge #1: Finding Alternatives to ULL SSDs
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- Consider DRAM as an alternative to ULL SSDs:
- DRAM is much faster than ULL SSDs
- Potential gain from using I/O polling should be greater as well

What about DRAM? Less than < 200 ns > 10X

4 KB random read latency Potential gain

HDD 2~20ms 0.001~0.0001%

TLC SSD 40~50 us 2~3%

ULL SSD 8~20 us 10~25%
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Can We Use DRAM as a Block Device?
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- Special cases when DRAM is accessed using I/O requests: 

- Battery backed DRAM SSDs
- Share the same limitation as ULL SSDs

- DRAM host cache in virtualized environments
- Guest applications issue I/O requests to access the host cache
- Guest OSes rely on interrupts even when accessing the host 

cache
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Can We Use DRAM as a Block Device?
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- Special cases when DRAM is accessed using I/O requests: 

- Battery backed DRAM SSDs
- Share the same limitation as ULL SSDs

- DRAM host cache in virtualized environments
- Guest applications issue I/O requests to access the host cache
- Guest OSes rely on interrupts even when accessing the host 

cacheProposal to Challenge #1: Finding Alternatives to ULL SSDs: 
Apply I/O polling for DRAM host cache
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Challenge #2: Enhancing Kernel Support for I/O Polling
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Challenge #2: Enhancing Kernel Support for I/O Polling
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Design criteria
1. No modification of application code
2. Minimal changes to the kernel I/O stacks
3. Focus on synchronous I/Os
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Proposal to Challenge #2: Flag Injection
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- I/O polling codes in Linux are
activated with the hipri flag

- hipri flag injection enables I/O polling
code reuse with minimal Linux block
layer modification

- Newly added support for I/O polling:
- Sync I/Os using read() & write()
- Memory-mapped I/Os
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Diff Summary
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drivers/nvme/host/core.c |  3 ++-
fs/ext4/file.c   |  2 +-
fs/ext4/readpage.c   | 57 ++++++++++++++++++++++++++++++++++++++++++++++++---------
fs/iomap/direct-io.c |  3 +--
block/bio.c   |  2 ++
block/blk-core.c  |  3 +++
block/blk-merge.c |  2 +-
block/blk-mq.c |  5 ++++-
block/fops.c  |  7 ++++---
include/blk_types.h |  4 ++++
include/blkdev.h |  3 +++
mm/filemap.c |  2 +-

12 files changed, 74 insertion(+), 19 deletion(-)
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- Existing configuration:
- Interrupt-driven I/O stack for both guest

and host OSes

- Proposed polled I/O stack:
- Replaces most of the interrupt-driven 

I/O path with polling, except for the VBD

Virtualized System Configurations

14
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Improving Host Cache Throughput
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4kb random read @1~4 threads
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Copying Multiple Small-Sized Files
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- File size: 4 KB
- # of files: 262,144 (total 1 GB)
- Guest CP: Host cache to guest tmpfs
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Copying Multiple Small-Sized Files
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- File size: 4 KB
- # of files: 262,144 (total 1 GB)
- Guest CP: Host cache to guest tmpfs
- Host (ULL) SSD: Intel Optane 900P
- Host CP: Host SSD to host tmpfs
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Guest App Launch from Host SSD
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- Assume cold start scenario
- App code and data fetched from the host 

SSD
- App launch well optimized thanks to kernel 

features:
- Faultaround, readahead and readaround

Guest OS

Host OS

------------------------------------------------------
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Guest App Launch from Host SSD
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- Kernel features enabled (default)
- Utilizing faultaround, readahead and 

readaround
- I/Os from the guest OS: 128 KB (typ.)
- App launch primarily CPU-bound

Guest OS

Host OS

------------------------------------------------------I/O size: 128 KB
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Guest App Launch from Host SSD
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Normalized application launch time
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Guest App Launch from Host SSD
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Normalized application launch time

- Limited gain from using poll kernel
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Guest App Launch from Host SSD
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- Kernel features disabled in the guest OS
(NOPT)
- I/Os from the guest OS: 4 KB (typ.)
- App launch becoming more I/O bound

Guest OS

Host OS

------------------------------------------------------I/O size: 4 KB
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Guest App Launch from Host SSD
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Normalized application launch time
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Guest App Launch from Host SSD
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Normalized application launch time

- Vanilla kernel shows up to 20% slowdown 
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Guest App Launch from Host SSD
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Normalized application launch time

- Vanilla kernel shows up to 20% slowdown 
- Poll kernel can mitigate slowdowns
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Memory Usage Reduction
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Memory Usage Reduction
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Memory usage reduction:      31%             36%            4%             31%
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Conclusion
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- Polled I/O path expansion
- Benefits user applications without source modification

- Demonstrating polling benefits
- Not limited to ULL SSDs
- Improving access speed of host page cache by up to 3X in virtualized

systems

- Use cases
- Improving small file copy performance
- Memory usage reduction for guest application startup
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Future Work
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- Further improving host page cache throughput

- Plan to identify stronger use cases

- Assessing the effects of CPU contention on polled I/O performance
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Future Work
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- Further improving host page cache throughput

- Plan to identify stronger use cases

- Assessing the effects of CPU contention on polled I/O performance

Thank you!


