
© Dutt Research Group, 2024

Improving Virtualized I/O Performance
by Expanding the Polled I/O Path of Linux

Dongjoo Seo1, Yongsoo Joo2, Nikil Dutt1
1UC Irvine, CA

2Kookmin Univ., Seoul, Korea

HotStorage’24

The 16th ACM Workshop on Hot Topics in Storage and File Systems



© Dutt Research Group, 2024

Interrupt: I/O Completion Method for Storage

2

- Interrupt adds delay to the raw device latency

- Context switching and ISR are the primary 
sources of the additional delay
- Typically 2 µs or more

- The overhead varies by the type of storage

Interrupt driven I/O

4 KB random read latency Overhead (typ.)

HDD 2~20ms 0.001~0.0001%

TLC SSD 40~50 us 2~3%

ULL SSD 8~20 us 10~25%



© Dutt Research Group, 2024

I/O Polling: An Alternative to Interrupts

3

Polled I/O - Continuously checks the I/O completion queue 
until the I/O operation is complete

- No context switching, ISR, or CPU sleep and 
wakeup is required



© Dutt Research Group, 2024

Potential gain

Interrupt-Driven I/O vs. Polled I/O

4

Interrupt driven I/O Polled I/O



© Dutt Research Group, 2024

Challenges Limiting the Adoption of I/O Polling

5

- #1: Low popularity of ULL SSDs
- High cost per bit
- Manufacturers are winding down their ULL SSD businesses

- #2: Limited support of Linux
- Currently, the Linux polled I/O path is only accessible via io_uring
- Direct sync I/O has been removed since kernel 5.19
- No support for buffered I/Os and memory mapped I/Os



© Dutt Research Group, 2024

Challenge #1: Finding Alternatives to ULL SSDs

6

- Consider DRAM as an alternative to ULL SSDs:
- DRAM is much faster than ULL SSDs
- Potential gain from using I/O polling should be greater as well

What about DRAM? ? ?

4 KB random read latency Potential gain

HDD 2~20ms 0.001~0.0001%

TLC SSD 40~50 us 2~3%

ULL SSD 8~20 us 10~25%



© Dutt Research Group, 2024

Challenge #1: Finding Alternatives to ULL SSDs

7

- Consider DRAM as an alternative to ULL SSDs:
- DRAM is much faster than ULL SSDs
- Potential gain from using I/O polling should be greater as well

What about DRAM? Less than < 200 ns > 10X

4 KB random read latency Potential gain

HDD 2~20ms 0.001~0.0001%

TLC SSD 40~50 us 2~3%

ULL SSD 8~20 us 10~25%



© Dutt Research Group, 2024

Can We Use DRAM as a Block Device?

8

- Special cases when DRAM is accessed using I/O requests: 

- Battery backed DRAM SSDs
- Share the same limitation as ULL SSDs

- DRAM host cache in virtualized environments
- Guest applications issue I/O requests to access the host cache
- Guest OSes rely on interrupts even when accessing the host 

cache



© Dutt Research Group, 2024

Can We Use DRAM as a Block Device?

9

- Special cases when DRAM is accessed using I/O requests: 

- Battery backed DRAM SSDs
- Share the same limitation as ULL SSDs

- DRAM host cache in virtualized environments
- Guest applications issue I/O requests to access the host cache
- Guest OSes rely on interrupts even when accessing the host 

cacheProposal to Challenge #1: Finding Alternatives to ULL SSDs: 
Apply I/O polling for DRAM host cache



© Dutt Research Group, 2024

Challenge #2: Enhancing Kernel Support for I/O Polling

10



© Dutt Research Group, 2024

Challenge #2: Enhancing Kernel Support for I/O Polling

11

Design criteria
1. No modification of application code
2. Minimal changes to the kernel I/O stacks
3. Focus on synchronous I/Os



© Dutt Research Group, 2024

Proposal to Challenge #2: Flag Injection

12

- I/O polling codes in Linux are
activated with the hipri flag

- hipri flag injection enables I/O polling
code reuse with minimal Linux block
layer modification

- Newly added support for I/O polling:
- Sync I/Os using read() & write()
- Memory-mapped I/Os



© Dutt Research Group, 2024

Diff Summary

13

drivers/nvme/host/core.c |  3 ++-
fs/ext4/file.c   |  2 +-
fs/ext4/readpage.c   | 57 ++++++++++++++++++++++++++++++++++++++++++++++++---------
fs/iomap/direct-io.c |  3 +--
block/bio.c   |  2 ++
block/blk-core.c  |  3 +++
block/blk-merge.c |  2 +-
block/blk-mq.c |  5 ++++-
block/fops.c  |  7 ++++---
include/blk_types.h |  4 ++++
include/blkdev.h |  3 +++
mm/filemap.c |  2 +-

12 files changed, 74 insertion(+), 19 deletion(-)



© Dutt Research Group, 2024

- Existing configuration:
- Interrupt-driven I/O stack for both guest

and host OSes

- Proposed polled I/O stack:
- Replaces most of the interrupt-driven 

I/O path with polling, except for the VBD

Virtualized System Configurations

14



© Dutt Research Group, 2024

Improving Host Cache Throughput

15

4kb random read @1~4 threads



© Dutt Research Group, 2024

Copying Multiple Small-Sized Files

16

- File size: 4 KB
- # of files: 262,144 (total 1 GB)
- Guest CP: Host cache to guest tmpfs



© Dutt Research Group, 2024

Copying Multiple Small-Sized Files

17

- File size: 4 KB
- # of files: 262,144 (total 1 GB)
- Guest CP: Host cache to guest tmpfs
- Host (ULL) SSD: Intel Optane 900P
- Host CP: Host SSD to host tmpfs



© Dutt Research Group, 2024

Guest App Launch from Host SSD

18

- Assume cold start scenario
- App code and data fetched from the host 

SSD
- App launch well optimized thanks to kernel 

features:
- Faultaround, readahead and readaround

Guest OS

Host OS

------------------------------------------------------



© Dutt Research Group, 2024

Guest App Launch from Host SSD

19

- Kernel features enabled (default)
- Utilizing faultaround, readahead and 

readaround
- I/Os from the guest OS: 128 KB (typ.)
- App launch primarily CPU-bound

Guest OS

Host OS

------------------------------------------------------I/O size: 128 KB



© Dutt Research Group, 2024

Guest App Launch from Host SSD

20

Normalized application launch time



© Dutt Research Group, 2024

Guest App Launch from Host SSD

21

Normalized application launch time

- Limited gain from using poll kernel



© Dutt Research Group, 2024

Guest App Launch from Host SSD

22

- Kernel features disabled in the guest OS
(NOPT)
- I/Os from the guest OS: 4 KB (typ.)
- App launch becoming more I/O bound

Guest OS

Host OS

------------------------------------------------------I/O size: 4 KB



© Dutt Research Group, 2024

Guest App Launch from Host SSD

23

Normalized application launch time



© Dutt Research Group, 2024

Guest App Launch from Host SSD

24

Normalized application launch time

- Vanilla kernel shows up to 20% slowdown 



© Dutt Research Group, 2024

Guest App Launch from Host SSD

25

Normalized application launch time

- Vanilla kernel shows up to 20% slowdown 
- Poll kernel can mitigate slowdowns



© Dutt Research Group, 2024

Memory Usage Reduction

26

M
em

or
y 

us
ag

e



© Dutt Research Group, 2024

Memory Usage Reduction

27

Memory usage reduction:      31%             36%            4%             31%

M
em

or
y 

us
ag

e



© Dutt Research Group, 2024

Conclusion

28

- Polled I/O path expansion
- Benefits user applications without source modification

- Demonstrating polling benefits
- Not limited to ULL SSDs
- Improving access speed of host page cache by up to 3X in virtualized

systems

- Use cases
- Improving small file copy performance
- Memory usage reduction for guest application startup



© Dutt Research Group, 2024

Future Work

29

- Further improving host page cache throughput

- Plan to identify stronger use cases

- Assessing the effects of CPU contention on polled I/O performance



© Dutt Research Group, 2024

Future Work

30

- Further improving host page cache throughput

- Plan to identify stronger use cases

- Assessing the effects of CPU contention on polled I/O performance

Thank you!


