Improving Virtualized |/O Performance
by Expanding the Polled I/O Path of Linux

Dongjoo Seo', Yongsoo Joo?, Nikil Dutt’

TUC Irvine, CA
2Kookmin Univ., Seoul, Korea

13 UCIRVINE

HotStorage’24

© Dutt Research Group, 2024

Interrupt: I/O Completion Method for Storage

User perceived latency

3

Interrupt driven 1/O

Syscall

>

Context switching

Release CPU

Context switching

Interrupt adds delay to the raw device latency
Context switching and ISR are the primary
sources of the additional delay

- Typically 2 ys or more

The overhead varies by the type of storage

4 KB random read latency Overhead (typ.)
HDD 2~20ms 0.001~0.0001%
TLC SSD 40~50 us 2~3%
ULL SSD 8~20 us 10~25%

© Dutt Research Group, 2024

I/O Polling: An Alternative to Interrupts

User perceived latency

3

Polled 1/0

[Syscall

Are you done?

Continuously checks the |/O completion queue
until the 1/O operation is complete

No context switching, ISR, or CPU sleep and
wakeup is required

© Dutt Research Group, 2024

Interrupt-Driven 1/O vs. Polled 1/O

Interrupt driven 1/O Polled 1/0

‘ Syscall [Syscall
Context switching

Are you done?

Release CPU
ISR

Context switching A

User perceived latency

User perceived latency

Potential gain

% © Dutt Research Group, 2024 4

Challenges Limiting the Adoption of I/0 Polling

- #1: Low popularity of ULL SSDs
- High cost per bit
- Manufacturers are winding down their ULL SSD businesses

- #2: Limited support of Linux
- Currently, the Linux polled I/O path is only accessible via io_uring
- Direct sync I/O has been removed since kernel 5.19
- No support for buffered I/Os and memory mapped 1/Os

% © Dutt Research Group, 2024 5

Challenge #1: Finding Alternatives to ULL SSDs

- Consider DRAM as an alternative to ULL SSDs:
- DRAM is much faster than ULL SSDs
- Potential gain from using I/O polling should be greater as well

4 KB random read latency Potential gain

3

| Syscall

© Dutt Research Group, 2024

%)

C

= HDD 2~20ms 0.001~0.0001%
k5 Are you done? TLC SSD 40~50 us 2~3%

s

O ULL SSD 8~20 us 10~25%

8

@

(2]

o

Challenge #1: Finding Alternatives to ULL SSDs

- Consider DRAM as an alternative to ULL SSDs:
- DRAM is much faster than ULL SSDs
- Potential gain from using I/O polling should be greater as well

4 KB random read latency Potential gain

3

| Syscall

© Dutt Research Group, 2024

%)

C

= HDD 2~20ms 0.001~0.0001%
k5 Are you done? TLC SSD 40~50 us 2~3%

s

O ULL SSD 8~20 us 10~25%

8

@

(2]

o

Can We Use DRAM as a Block Device?

- Special cases when DRAM is accessed using |/O requests:

- Battery backed DRAM SSDs
- Share the same limitation as ULL SSDs

- DRAM host cache in virtualized environments
- Guest applications issue /O requests to access the host cache
- Guest OSes rely on interrupts even when accessing the host
cache

% © Dutt Research Group, 2024 8

Can We Use DRAM as a Block Device?

- Special cases when DRAM is accessed using |/O requests:

- Battery backed DRAM SSDs
- Share the same limitation as ULL SSDs

- DRAM host cache in virtualized environments

P

Proposal to Challenge #1: Finding Alternatives to ULL SSDs:
Apply 1/O polling for DRAM host cache

% © Dutt Research Group, 2024 9

Challenge #2: Enhancing Kernel Support for 1/O Polling

Application Page fault handler < Poll path >

vV v | — preadv2()/pwritev2()

VES * faultaround < Interrupt path >

hibri Page cache > Direct I/0
7 . — Buffered I/O
Memory mapped I/O
readahead readaround

\® o) o) (read-only pages)
poll int int int — Memory mapped 1/O

Block layer (read-write pages)

& © Dutt Research Group, 2024 10

Challenge #2: Enhancing Kernel Support for 1/O Polling

Application Page fault handler < Poll path >

Vv v — preadv2()/pwritev2()

VFS faultaround < latarypt path >

Design criteria /0
hipri 1. No modification of application code
2. Minimal changes to the kernel I/O stacks vd 1/0

el 3. Focus on synchronous I/Os y mapped I/0O

@ o) ' | o) ' (read-only pages)
poll int int int — Memory mapped I/O

Block layer (read-write pages)

& © Dutt Research Group, 2024 11

Proposal to Challenge #2: Flag Injection

User space [|Kernel space []Added procedure
I / O p O l I In g COd es In L INUX are Application Application Application Application
activated with the hipri flag [submit_bio) | [‘Checkbi opf | | readpages) | | readpages) |
Context l - 'Set hipri i ext4_mpage_ ext4_mpage_

. . L. . . switching ’ SETIE0 | readpages() readpages()
hipri flag injection enables /O polling .1/ SOM B0 [y ey || | crace oo
code reuse with minimal Linux block L Rhander | App;:aﬁon Context [sethipri |

. . Conton SW'tf.hmg | submit_bio() |
layer modification onte
SWIGAIng [IRQhandler | | blkpoll) |
_ Application l " Clear hipri]
Newly added support for I/O polling: e —

- Sync I/Os using read() & write()
- Memory-mapped I/Os

(a) I/0 path @
of the vanilla kernel

(b) Proposed
I/O path @)

© Dutt Research Group, 2024

Page status
update functions

Application
(c) I/0 paths

of the vanilla kernel

update functions

Application

(d) Proposed
I/O paths

12

Diff Summary

drivers/nvme/host/core.c | 3 ++-

fs/ext4/file.c | 2 +-
fs/extd/readpage.c | 57 +++++++++++++++++HHFH AR A A
fs/iomap/direct-io.c | 3 +--

block/bio.c | 2 ++
block/blk-core.c | 3 +++
block/blk-merge.c | 2 +-

block/blk-mg.c | 5 4+++-
block/fops.c | 7 ++++---
include/blk types.h | 4 ++++
include/blkdev.h | 3 +++

mm/filemap.c | 2 +-

12 files changed, 74 insertion(+), 19 deletion(-)

% © Dutt Research Group, 2024 13

Virtualized System Configurations

::: Vanilla kernel Proposed poll kernel
—» Cache access = Interrupt driven I/O = Polled I/O

- Existing configuration:

- Interrupt-driven /O stack for both guest ~Aeicaton [Ussciepieaton| | Usertopicatn
and host OSes | Guest cache | | Guest cache |
Guest O [ECEISENEENE @] a
| BI;CK Ig er| | Blick layer
- Proposed polled I/O stack: T - T =
- Replaces most of the interrupt-driven _ vme @ @<§;
. . oC evice
I/O path with polling, except forthe VBD] S
f:f':*:f:fz* 1 v *
| Host cache | | Hostcache |
Host OS i o] |
| !3I.o.cll(Ig er| | Block layer |
------------------ {: NVMe c:irlver |-----------| NVMe driver }----

* ¥
Host SSD :‘? 'Cb‘
.,l Y N YRV,
% © Dutt Research Group, 2024 »

Improving Host Cache Throughput

OPV2-VK EIPV2-PK [ODIO-VK L[IDIO-PK
OBUFF-VK EBUFF-PK COMMAP-VK LCMMAP-PK

(MB/s)
800 25 = & &
S & & &

600

400 mSENA H

200

0
1 2 3 4
Vanilla kernel (VK) Poll kernel (PK)
4kb random read @1 ~4 threads I/0 engine Interrupt Polling Polling

pvsync2 w/ hipri | N/A PV2-VK | PV2-PK
sync w/ direct I/O DIO-VK N/A DIO-PK
sync w/ buffered I/O | BUFF-VK N/A BUFF-PK
mmap MMAP-VK | N/A MMAP-PK

% © Dutt Research Group, 2024 15

Copying Multiple Small-Sized Files

- File size: 4 KB Application | User Applliatlon |
- # of files: 262,144 (total 1 GB) Guestcache] P
- Guest CP: Host cache to guest tmpfs Guest OS | BI(!;CI« jayer |

{ Fron fend f-------eo-

A
Virtual)
block device

| Backend |--------------

B VK B PK | a" e” *
. 20 | Host cache |
) Host OS | |
;3, 15 | Block layer |
() 10 [
.g I NVMe driver f------sseezeaees
> 2

Host SSD
& 0 o l ‘ (Tead)
O ' ‘Q'
Guest cp
(a) Guest CP
% © Dutt Research Group, 2024 16

Copying Multiple Small-Sized Files

- File size: 4 KB Application | Userl Application | | User Application |
.) 1 tmpfs | —— D e e
- #offiles: 262,144 (total 1 GB) | Guistcache | | Guclast cache |
- Guest CP: Host cache to guest tmpfs Guest OS | Bloch e [Block EE |
- Host (ULL) SSD: Intel Optane 900P I vl —_— 1 ¥ I -
- Host CP: Host SSD to host tmpfs Vit t
block device fz z) S
| Backend |---------------- { Backend |-----
B VK B PK :)
[tmpfs | v 4
— 20 | Holst ca(ihe | . | Holst ca<ihe |
[$) Host OS
g 15 | BI(IJck layer | | Block layer |
()
.g Ly I NVMe driver } ---------------- { NVMe driver |---
2 2 Host SSD 4
§ o S,
Guestcp Host cp I
(@) Guest CP (b) Host CP
% © Dutt Research Group, 2024 17

Guest App Launch from Host SSD

- Assume cold start scenario | +A[:iplication+ | | Page fault handler |
- App code and data fetched from the host | Vs | [faultaround |
SSD Guest OS hipri | Page cache -~ ‘
. i ¥
- App launch well optimized thanks to kernel [readehead| [readaround]
featu res. poll in’fD wtt® in+t®
- Faultaround, readahead and readaround Zeccoi
‘ Application H Page fault handler ‘
T3
’ VFS ‘ ‘faultaroundl
i
HostOS hipri | Page cache -~ ‘
‘ readahead ‘ ‘ readaround ’
@ @ 1O
poll int int int
Block layer

% © Dutt Research Group, 2024 18

Guest App Launch from Host SSD

- Kernel features enabled (default) T T T T T
- Utilizing faultaround, readahead and | Vs \m
readaround Guest OS hipri Page cache -~
- 1/Os from the guest OS: 128 KB (typ.)
- App launch primarily CPU-bound ool T
Block layer

/O size: 128 KB

‘ Application H Page fault handler ‘
v v)

’ VFS ‘ (faultaround D

v
Host OS hipri Page cache

poll |nt int
Block layer

% © Dutt Research Group, 2024 19

Guest App Launch from Host SSD

125% & g
100% . = I '
75% -
50%
25%

0%

H 9.6s
1 13.4s

Matlab Android Onlyoffice ~ Kdenlive
Studio

Normalized application launch time

% © Dutt Research Group, 2024 20

Guest App Launch from Host SSD

VK | PK
125% 8 3 g g
100% - . _ M i
75% .
50%

o5%| - Limited gain from using poll kernel

0% : , :
Matlab Android Onlyoffice ~ Kdenlive
Studio

Normalized application launch time

% © Dutt Research Group, 2024 21

Guest App Launch from Host SSD

- Kernel features disabled in the guest OS icstonil| [MEses Etharicrll

(NOPT) S S| @><]
- 1/Os from the guest OS: 4 KB (typ.) Siest 08 th-

- App launch becoming more I/O bound

Page cache ‘

.

poll int int int
Block layer

I/0 size: 4 KB

‘ Application H Page fault handler ‘
v)

’ VFS ‘ (faultaround D

¥
Host OS hTrl Page cache

reaead b 1 readaround D

poll |nt int
Block layer

% © Dutt Research Group, 2024 22

Guest App Launch from Host SSD

VK PK [VK-NOPT PK-NOPT
125% & _
100% = . [z = 1 - I
75% =
50%
25%
0%

Matlab Android Onlyoffice Kdenlive
Studio

Normalized application launch time

% © Dutt Research Group, 2024 23

Guest App Launch from Host SSD

125%
100%
75%
50%
25%
0%

VK PK VK-NOPT PK-NOPT

- Vanilla kernel shows up to 20% slowdown

Matlab Android Onlyoffice Kdenlive
Studio

Normalized application launch time

© Dutt Research Group, 2024

24

Guest App Launch from Host SSD

125%
100%
75%
50%
25%
0%

VK PK VK-NOPT PK-NOPT

I/I/

- Vanilla kernel shows up to 20% slowdown

- Poll kernel can mitigate slowdowns

Matlab Android Onlyoffice Kdenlive
Studio

Normalized application launch time

© Dutt Research Group, 2024 25

Memory Usage Reduction

(MB) Matlab Android Onlyoffice Kdenlive

2000 Studio
0,
© L \\ Guest cache
=X 1500 | Host cache
& 46%| 69% 100%
1000 Ng
g 30%| | l47%| 64%
= o
g 500 54% s I 27% 10(1% 96% 109% 69%
b ||58%| |ggop| [45%]| [42%| [46%| o
°| | |55%| |54%| |54%| [39%

VK PK- VK PK- VK PK- VK PK-
NOPT NOPT NOPT NOPT

% © Dutt Research Group, 2024 26

Memory Usage Reduction

(MB) Matlab Android Onlyoffice Kdenlive

2000 Studio
1% \\ Guest cache
q) [
> 1500 I | Host cache
& 46% 9-69% 100%
1000 \mi
- 30%| | | 47% 164%
-
G 500 ” | 27%| 100% 96% 100%
= s 40%| |53% 45% 42%0 46% 069:%’
36%| 5500l |54%| [54%]| [399;
(] (1] (] 39%
VK PK- VK PK- VK PK- VK PK-
NOPT NOPT NOPT NOPT
Memory usage reduction: 31% 36% 4% 31%

% © Dutt Research Group, 2024 27

Conclusion

- Polled I/O path expansion
- Benefits user applications without source modification

- Demonstrating polling benefits
- Not limited to ULL SSDs
- Improving access speed of host page cache by up to 3X in virtualized
systems

- Use cases

- Improving small file copy performance
- Memory usage reduction for guest application startup

% © Dutt Research Group, 2024 28

Future Work

- Further improving host page cache throughput
- Plan to identify stronger use cases

- Assessing the effects of CPU contention on polled I/O performance

% © Dutt Research Group, 2024 29

Future Work

- Further improving host page cache throughput
- Plan to identify stronger use cases

- Assessing the effects of CPU contention on polled I/O performance

Thank yout!

% © Dutt Research Group, 2024 30

