
Advocating for Key-Value Stores with 
Workload Pattern Aware Dynamic Compaction

Heejin Yoon, Jin Yang, Juyoung Bang,
Sam H. Noh*, Young-ri Choi

UNIST, *Virginia Tech



2

Contents

• Background and Motivation

• DOPA-DB

• Evaluation

• Discussion & Future works

• Conclusion



3

Background: LSM-based KVS

• Log-Structured Merge-tree based KV store 

§ High write performance due to sequential write

§ Used for various data-intensive applications

M
em
or
y

D
isk 𝐿!

⁝
7   15

17     21 22     25 27        32

…

MemTable

16    24 29     35…

33        38…

SSTables

5    28

Immutable
MemTable

0     10

𝐿"#$

𝐿"#%

8     141      5

2     13

Lower (Recent)

Upper (Old)



4

Flush of LSM-based KVS

• Data is saved to disk in the form of file through Flush
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Compaction of LSM-based KVS

• Disk-level data is sorted by Compaction
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Dynamic workload in real world

• In real life, workload pattern regarding ratio of write and read 

operations changes over time

The QPS variation in a 14-day time span of UDB [1]

[1] Characterizing, modeling, and benchmarking RocksDB Key-Value workloads at facebook (FAST 2020)
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Dynamic workload in real world

• In real life, workload pattern regarding ratio of write and read 

operations changes over time

The QPS variation in a 14-day time span of UDB [1]

[1] Characterizing, modeling, and benchmarking RocksDB Key-Value workloads at facebook (FAST 2020)

What scenario is ideal for each workload pattern?
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Write stall on write intensive workload

• In write intensive workloads, write stalls may occur

§ 𝐿! stall è most crucial!

§ MemTable Stall

§ Pending stall
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Visualize 𝑳𝟎 status with fill-to-threshold ratio

• Fill-to-threshold ratio = !!	#$%&
!!	#'())	'*+&#*,)-

§ 𝐿!	𝑠𝑡𝑎𝑙𝑙	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : Size that triggers 𝐿! stall

§ Fill-to-threshold ratio > 1 è 𝐿! stall triggered
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𝑳𝟎 stall on write intensive workload

• Large upper-level compaction causes 𝐿! stall

§ 𝐿! compaction cannot be triggered on time
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Compaction strategy for write intensive workload

• Adjusting upper-level compaction(ULC) size could avoid 𝐿! stall

§ With ULC latency, next 𝐿" compaction latency must be considered
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Multiple disk access on read intensive workload

• For read, LSM KVS has to check multiple components

§ Multiple disk accesses
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No 𝑳𝟎 stall on read intensive workload

• On read intensive workload, 𝐿! stall is rare 

§ No flush on read-only workload
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Compaction strategy for read intensive workload

• Upper-level compaction size can be very large

§ Helpful in reducing the number of levels to access
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Minimize 𝐿! stall

Goal of dynamic compaction

Goal of dynamic compaction

Locate data in single level

Write intensive workload Read intensive workload
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Compaction size depending on workload pattern

Depending on workload pattern, different compaction size is preferred
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DOPA-DB

Tiered LSM-tree based KV store with multiple key ranges 

Compaction Size Recommender :

Dynamic compaction size recommendation for dynamic workload 

+

DOPA-DB
Dynamic wOrkload Pattern Aware LSM-Based KV store



18

DOPA-DB based on tiered LSM KVS

𝑳𝟎

𝑳𝟏
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• Each level, except for 𝐿! and last level, consists of 𝑝	sub-levels

• Tiered LSM KVS avoids compaction at neighboring levels except for the last level 
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DOPA-DB with multiple key ranges

• To support dynamic compaction strategy, range is used for compaction unit

§ Not overlapped

§ Uniformly sized

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

Size: 100 Size: 100 Size: 100 Size: 100

𝑳𝒊
Sub level 1

Sub level 2
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Tiered LSM KVS with multiple key ranges for DOPA-DB

• Every level has multiple key ranges

§ Number of range grows based on range amplification factor

𝑳𝟎

𝑳𝟏

…

𝑳𝟐

A:   [0, 30]

A: [0,5] B: [6,12] C: [13,21] D: [22,30] E: [31,40] F: [41,55] G: [56,78] H: [79,100]

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

B:  [31,100] A:  [0, 30] B:  [31,100]

SST #1 SST #2

Doubled
Range #
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E: [31,40] F: [41,55] G: [56,78] H: [79,100]

Tiered compaction with multiple key range

• Tiered compaction with multiple key ranges is performed based on sub-levels

§ Number of compaction units is decided by CSR

𝑳𝟏

…

𝑳𝟐

A: [0,5] B: [6,12] C: [13,21] D: [22,30]

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

Dynamic
Compaction Size 

Recommender (CSR)

Compacting 2 ranges allowed
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E: [31,40] F: [41,55] G: [56,78] H: [79,100]

Placement after tiered compaction

• Placement of compaction output maintains non overlapped status of each sub level

𝑳𝟏

…

𝑳𝟐

A: [0,5] B: [6,12] C: [13,21] D: [22,30]

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

Compacted
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DOPA-DB with CSR

• Compaction Size Recommender(CSR) suggests size of upper-level compaction 

Dynamic
Compaction Size 

Recommender (CSR)

𝑹𝟎 𝑹𝟏 𝑹𝟐 𝑹𝟑

…

Largest size such that 
𝐿! stall does not occur
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How CSR calculates ULC size

• To calculate ULC (upper-level compaction) size, values of parameters 

are estimated

§ Monitor flush & compaction speed during fixed time window (5 sec)

§ Remaining 𝐿" size 

§ Estimated next 𝐿" compaction size

Total 𝐿! file size: 400MB Remaining 𝐿! size : 400MB

𝐿! stall threshold: 800MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

Estimated next 𝐿! compaction size = 200MB



25

How CSR calculates ULC size: Step 1

• Step 1. Calculate latency for ULC (upper-level compaction)

§ A = Latency until 𝐿! stall threshold reached = "#$%&'&'(	*:	+&,#
-./+0	+1##2

Remaining 𝐿! size : 400MB

𝐿! stall threshold: 800MB

A =  ;!!<=>!<=/@  = 5 seconds

Estimated next 𝐿! compaction size = 200MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

Total 𝐿! file size: 400MB
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How CSR calculates ULC size: Step 1

• Step 1. Calculate latency for ULC (upper-level compaction)

§ B = Next 𝐿! compaction latency = 3+4&$%4#2	'#54	*:	67$1%64&7'	+&,#
87$1%64&7'	+1##2

𝐿! stall threshold: 800MB

Estimated next 𝐿! compaction size = 200MB

B = A!!<=
B!!<=/@

 = 2 seconds

Flush speed: 80MB/s
Compaction speed: 100MB/s

Remaining 𝐿! size : 400MBTotal 𝐿! file size: 400MB



27

How CSR calculates ULC size: Step 1

• Step 1. Calculate latency for ULC (upper-level compaction)

§ Latency until 𝐿! stall threshold reached(A) - Next 𝐿! compaction latency(B) 

§ A - B = 3 seconds allowed for upper-level compaction

𝐿! stall threshold: 800MB

Estimated next 𝐿! compaction size = 200MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

A =  ;!!<=>!<=/@  = 5 seconds

B = A!!<=
B!!<=/@

 = 2 seconds

Remaining 𝐿! size : 400MBTotal 𝐿! file size: 400MB
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How CSR calculates ULC size: Step 2

• Step 2. Calculate compaction size within latency for ULC

§ Based on result of Step 1, we can obtain compaction size

̵ Compaction size = latency of compaction × compaction speed

Latency for upper-level compaction = 3 seconds

è Compaction size = 3 seconds × 100MB/s = 300MB

Flush speed: 80MB/s
Compaction speed: 100MB/s
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How CSR calculates ULC size: Step 3

• Step 3. Find number of ranges corresponding to the size

Expected Compaction size during the latency = 300MB

𝑅!  size : 100MB 𝑅B  size : 100MB 𝑅A  size : 150MB 𝑅C  size : 100MB

2 ranges will be compacted! (250MB < 300MB)

…

Dynamic
Compaction Size 

Recommender (CSR)

𝑳𝒊
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Evaluation setup

Parameter

• Enable Direct I/O

• Number of sub levels: 4

• Range amplification factor: 4

• Number of L0 ranges : 4

Workload

• 16B key + 100B value
• Run with 16 threads

100M 
Load

300M
Mixed 

operations

300M
Mixed 

operations
…

Time

Testbed

• 32-core Intel Xeon CPU E5-2683 v4

• 32GB DRAM

• Samsung 870 EVO SSD 1TB

• Ubuntu 20.04.4
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Workload description

Load Insert 100%

W50 Insert 50% + Read 50%

W5 Insert 5% + Read 95%

W0 Read 100%

U/Z Uniform / Zipfian

Evaluation on mixed workload

• For write/read intensive workloads, throughput of DOPA-DB is higher

§ Dynamic compaction size recommendation helps to optimize compaction for each 

operation

Higher is better 
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Workload description

Load Insert 100%

W50 Insert 50% + Read 50%

W5 Insert 5% + Read 95%

W0 Read 100%

U/Z Uniform / Zipfian

Evaluation on mixed workload

• Multiple sub levels increases the number of disk access when workload pattern changes

• Large amount of upper-level compaction causes disk bandwidth competition
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Discussion & Future work

Nimble and accurate adaptation
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Discussion & Future work
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Discussion & Future work

• Current DOPA-DB only supports single-threaded compaction

• Controlling compaction with multiple threads has to be considered

Using multiple compaction 
threads

• Parameters of current DOPA-DB are chosen empirically with 2 

considerations

• Range must not make size of SST too small

• Size of compaction unit size must not be too large 

Parameters of DOPA-DB

• Key order distribution of real-world dataset is dynamic

• Dynamic range readjustment is necessary for uniformly sized ranges
Skewed datasets
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Conclusion

• DOPA-DB : Dynamic wOrkload Pattern Aware LSM-based KV store 

• Advocate dynamic compaction size for dynamic workload 

• Tiered based LSM KVS can control fine-grained compaction size

• Evaluation on mixed workload

• Potential benefits of dynamic compaction

• Insight into research directions for dynamic compaction strategies 

• Envisioned dynamic approach can further drive performance improvements 
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