
Advocating for Key-Value Stores with
Workload Pattern Aware Dynamic Compaction

Heejin Yoon, Jin Yang, Juyoung Bang,
Sam H. Noh*, Young-ri Choi

UNIST, *Virginia Tech

2

Contents

• Background and Motivation

• DOPA-DB

• Evaluation

• Discussion & Future works

• Conclusion

3

Background: LSM-based KVS

• Log-Structured Merge-tree based KV store

§ High write performance due to sequential write

§ Used for various data-intensive applications

M
em
or
y

D
isk 𝐿!

⁝
7 15

17 21 22 25 27 32

…

MemTable

16 24 29 35…

33 38…

SSTables

5 28

Immutable
MemTable

0 10

𝐿"#$

𝐿"#%

8 141 5

2 13

Lower (Recent)

Upper (Old)

4

Flush of LSM-based KVS

• Data is saved to disk in the form of file through Flush

M
em
or
y

D
isk 𝐿!
⁝

7 15

17 21 22 25 27 32

…

MemTable

16 24 29 35…

33 38…

5 28

Immutable
MemTable

Flush

0 10

𝐿"#$

𝐿"#%

8 141 5

2 13

5

Compaction of LSM-based KVS

• Disk-level data is sorted by Compaction

M
em
or
y

D
isk 𝐿!
⁝

7 15

17 21 22 25 27 32

…

MemTable

16 24 29 35
…

33 38…

5 28

Immutable
MemTable

0 10

Compaction

8 141 5

2 13

𝐿"#$

𝐿"#%

6

Dynamic workload in real world

• In real life, workload pattern regarding ratio of write and read

operations changes over time

The QPS variation in a 14-day time span of UDB [1]

[1] Characterizing, modeling, and benchmarking RocksDB Key-Value workloads at facebook (FAST 2020)

7

Dynamic workload in real world

• In real life, workload pattern regarding ratio of write and read

operations changes over time

The QPS variation in a 14-day time span of UDB [1]

[1] Characterizing, modeling, and benchmarking RocksDB Key-Value workloads at facebook (FAST 2020)

What scenario is ideal for each workload pattern?

8

Write stall on write intensive workload

• In write intensive workloads, write stalls may occur

§ 𝐿! stall è most crucial!

§ MemTable Stall

§ Pending stall

M
em
or
y

D
isk𝐿!

⁝
7 15

17 21 22 25 27 32

…

MemTable

16 24 29 35
…

33 38…

5 28

Immutable
MemTable

0 10

Compaction

8 141 5

2 13

𝐿"#$

𝐿"#%

Flush

Write stall delays client write

Write KV

9

Visualize 𝑳𝟎 status with fill-to-threshold ratio

• Fill-to-threshold ratio = !!	#$%&
!!	#'())	'*+&#*,)-

§ 𝐿!	𝑠𝑡𝑎𝑙𝑙	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : Size that triggers 𝐿! stall

§ Fill-to-threshold ratio > 1 è 𝐿! stall triggered

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝑻𝒊𝒎𝒆

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟓

1

L& Upper L& Upper

𝒕𝟔𝒕𝟒
L&

10

𝑳𝟎 stall on write intensive workload

• Large upper-level compaction causes 𝐿! stall

§ 𝐿! compaction cannot be triggered on time

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝑻𝒊𝒎𝒆𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓

1

L& Upper L& Upper

< L& status on write intensive workload>

11

Compaction strategy for write intensive workload

• Adjusting upper-level compaction(ULC) size could avoid 𝐿! stall

§ With ULC latency, next 𝐿" compaction latency must be considered

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝑻𝒊𝒎𝒆𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓

1

Largest size such that 𝐿! stall does not occur
- Not too frequent
- Not too long

L& Upper L& Upper

< L& status with adjusted ULC size >

12

Multiple disk access on read intensive workload

• For read, LSM KVS has to check multiple components

§ Multiple disk accesses
M
em
or
y

D
isk 𝐿!

⁝

MemTable

SSTables

Immutable
MemTable

𝐿"#$

𝐿"#%

Find KV whose key = 33

Found!

7 15

17 21 22 25 27 32

…

16 24 29 35…

33 38…

5 280 10

8 141 5

2 13

13

No 𝑳𝟎 stall on read intensive workload

• On read intensive workload, 𝐿! stall is rare

§ No flush on read-only workload

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝑻𝒊𝒎𝒆𝒕𝟏 𝒕𝟐 𝒕𝟑

1

No flush

L&

Still, multiple levels exist
è High disk IO

< L& status on read intensive workload>

𝒕𝟒
Upper Upper

14

Compaction strategy for read intensive workload

• Upper-level compaction size can be very large

§ Helpful in reducing the number of levels to access

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝑻𝒊𝒎𝒆𝒕𝟏 𝒕𝟐 𝒕𝟑

1

No flush

L& Upper

Largest size such that 𝐿& stall does not occur
- Could be very large as long as no 𝐿& stall occurs

< L& status with adjusted ULC>

15

Minimize 𝐿! stall

Goal of dynamic compaction

Goal of dynamic compaction

Locate data in single level

Write intensive workload Read intensive workload

16

Compaction size depending on workload pattern

Depending on workload pattern, different compaction size is preferred

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝑻𝒊𝒎𝒆𝒕𝟏 𝒕𝟐 𝒕𝟑

1

L& Upper

𝒕𝟎

𝑭𝒊
𝒍𝒍
−
𝒕𝒐

−
𝒕𝒉
𝒓𝒆
𝒔𝒉
𝒐𝒍
𝒅	
𝒓𝒂
𝒕𝒊
𝒐

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓

1

L& Upper L& Upper

𝑻𝒊𝒎𝒆

Smaller upper-level compaction Larger upper-level compaction

Write intensive workload Read intensive workload

17

DOPA-DB

Tiered LSM-tree based KV store with multiple key ranges

Compaction Size Recommender :

Dynamic compaction size recommendation for dynamic workload

+

DOPA-DB
Dynamic wOrkload Pattern Aware LSM-Based KV store

18

DOPA-DB based on tiered LSM KVS

𝑳𝟎

𝑳𝟏

…

𝑳𝟐

• Each level, except for 𝐿! and last level, consists of 𝑝	sub-levels

• Tiered LSM KVS avoids compaction at neighboring levels except for the last level

Sub level 1

Sub level 𝑝

Sub level 1

Sub level 𝑝

No sub level

Compaction

𝑳𝒏9𝟏No sub level

…

…

…

19

DOPA-DB with multiple key ranges

• To support dynamic compaction strategy, range is used for compaction unit

§ Not overlapped

§ Uniformly sized

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

Size: 100 Size: 100 Size: 100 Size: 100

𝑳𝒊
Sub level 1

Sub level 2

20

Tiered LSM KVS with multiple key ranges for DOPA-DB

• Every level has multiple key ranges

§ Number of range grows based on range amplification factor

𝑳𝟎

𝑳𝟏

…

𝑳𝟐

A: [0, 30]

A: [0,5] B: [6,12] C: [13,21] D: [22,30] E: [31,40] F: [41,55] G: [56,78] H: [79,100]

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

B: [31,100] A: [0, 30] B: [31,100]

SST #1 SST #2

Doubled
Range #

21

E: [31,40] F: [41,55] G: [56,78] H: [79,100]

Tiered compaction with multiple key range

• Tiered compaction with multiple key ranges is performed based on sub-levels

§ Number of compaction units is decided by CSR

𝑳𝟏

…

𝑳𝟐

A: [0,5] B: [6,12] C: [13,21] D: [22,30]

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

Dynamic
Compaction Size

Recommender (CSR)

Compacting 2 ranges allowed

22

E: [31,40] F: [41,55] G: [56,78] H: [79,100]

Placement after tiered compaction

• Placement of compaction output maintains non overlapped status of each sub level

𝑳𝟏

…

𝑳𝟐

A: [0,5] B: [6,12] C: [13,21] D: [22,30]

A: [0, 12] B: [13, 30] C: [31, 55] D: [56, 100]

Compacted

23

DOPA-DB with CSR

• Compaction Size Recommender(CSR) suggests size of upper-level compaction

Dynamic
Compaction Size

Recommender (CSR)

𝑹𝟎 𝑹𝟏 𝑹𝟐 𝑹𝟑

…

Largest size such that
𝐿! stall does not occur

24

How CSR calculates ULC size

• To calculate ULC (upper-level compaction) size, values of parameters

are estimated

§ Monitor flush & compaction speed during fixed time window (5 sec)

§ Remaining 𝐿" size

§ Estimated next 𝐿" compaction size

Total 𝐿! file size: 400MB Remaining 𝐿! size : 400MB

𝐿! stall threshold: 800MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

Estimated next 𝐿! compaction size = 200MB

25

How CSR calculates ULC size: Step 1

• Step 1. Calculate latency for ULC (upper-level compaction)

§ A = Latency until 𝐿! stall threshold reached = "#$%&'&'(*:	+&,#
-./+0	+1##2

Remaining 𝐿! size : 400MB

𝐿! stall threshold: 800MB

A = ;!!<=>!<=/@ = 5 seconds

Estimated next 𝐿! compaction size = 200MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

Total 𝐿! file size: 400MB

26

How CSR calculates ULC size: Step 1

• Step 1. Calculate latency for ULC (upper-level compaction)

§ B = Next 𝐿! compaction latency = 3+4&$%4#2	'#54	*:	67$1%64&7'	+&,#
87$1%64&7'	+1##2

𝐿! stall threshold: 800MB

Estimated next 𝐿! compaction size = 200MB

B = A!!<=
B!!<=/@

 = 2 seconds

Flush speed: 80MB/s
Compaction speed: 100MB/s

Remaining 𝐿! size : 400MBTotal 𝐿! file size: 400MB

27

How CSR calculates ULC size: Step 1

• Step 1. Calculate latency for ULC (upper-level compaction)

§ Latency until 𝐿! stall threshold reached(A) - Next 𝐿! compaction latency(B)

§ A - B = 3 seconds allowed for upper-level compaction

𝐿! stall threshold: 800MB

Estimated next 𝐿! compaction size = 200MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

A = ;!!<=>!<=/@ = 5 seconds

B = A!!<=
B!!<=/@

 = 2 seconds

Remaining 𝐿! size : 400MBTotal 𝐿! file size: 400MB

28

How CSR calculates ULC size: Step 2

• Step 2. Calculate compaction size within latency for ULC

§ Based on result of Step 1, we can obtain compaction size

̵ Compaction size = latency of compaction × compaction speed

Latency for upper-level compaction = 3 seconds

è Compaction size = 3 seconds × 100MB/s = 300MB

Flush speed: 80MB/s
Compaction speed: 100MB/s

29

How CSR calculates ULC size: Step 3

• Step 3. Find number of ranges corresponding to the size

Expected Compaction size during the latency = 300MB

𝑅! size : 100MB 𝑅B size : 100MB 𝑅A size : 150MB 𝑅C size : 100MB

2 ranges will be compacted! (250MB < 300MB)

…

Dynamic
Compaction Size

Recommender (CSR)

𝑳𝒊

30

Evaluation setup

Parameter

• Enable Direct I/O

• Number of sub levels: 4

• Range amplification factor: 4

• Number of L0 ranges : 4

Workload

• 16B key + 100B value
• Run with 16 threads

100M
Load

300M
Mixed

operations

300M
Mixed

operations
…

Time

Testbed

• 32-core Intel Xeon CPU E5-2683 v4

• 32GB DRAM

• Samsung 870 EVO SSD 1TB

• Ubuntu 20.04.4

31

Workload description

Load Insert 100%

W50 Insert 50% + Read 50%

W5 Insert 5% + Read 95%

W0 Read 100%

U/Z Uniform / Zipfian

Evaluation on mixed workload

• For write/read intensive workloads, throughput of DOPA-DB is higher

§ Dynamic compaction size recommendation helps to optimize compaction for each

operation

Higher is better

32

Workload description

Load Insert 100%

W50 Insert 50% + Read 50%

W5 Insert 5% + Read 95%

W0 Read 100%

U/Z Uniform / Zipfian

Evaluation on mixed workload

• Multiple sub levels increases the number of disk access when workload pattern changes

• Large amount of upper-level compaction causes disk bandwidth competition

33

Discussion & Future work

Nimble and accurate adaptation

M
em
or
y

D
isk 𝐿!

⁝
7 15

17 19 21 22 23 25 27 32

…

MemTable

16 24 29 31 35…

33 38…

SSTables

5 28

Immutable
MemTable

0 4 10

𝐿"#$

𝐿"#%

8 11 141 3 5

2 6 9 13

Dynamic
Compaction Size

Recommender (CSR)

• 𝐿! size
• Flush speed
• Compaction speed

34

Discussion & Future work

M
em
or
y

D
isk 𝐿!

⁝
7 15

17 19 21 22 23 25 27 32

…

MemTable

16 24 29 31 35…

33 38…

SSTables

5 28

Immutable
MemTable

0 4 10

𝐿"#$

𝐿"#%

8 11 141 3 5

2 6 9 13Dynamic
Compaction Size

Recommender (CSR)

• 𝐿! size
• Flush speed
• Compaction speed
• Operation ratio?
• Bandwidth competition?

Nimble and accurate adaptation

35

Discussion & Future work

• Current DOPA-DB only supports single-threaded compaction

• Controlling compaction with multiple threads has to be considered

Using multiple compaction
threads

• Parameters of current DOPA-DB are chosen empirically with 2

considerations

• Range must not make size of SST too small

• Size of compaction unit size must not be too large

Parameters of DOPA-DB

• Key order distribution of real-world dataset is dynamic

• Dynamic range readjustment is necessary for uniformly sized ranges
Skewed datasets

36

Conclusion

• DOPA-DB : Dynamic wOrkload Pattern Aware LSM-based KV store

• Advocate dynamic compaction size for dynamic workload

• Tiered based LSM KVS can control fine-grained compaction size

• Evaluation on mixed workload

• Potential benefits of dynamic compaction

• Insight into research directions for dynamic compaction strategies

• Envisioned dynamic approach can further drive performance improvements

37

Thank you
heejin5178@unist.ac.kr

