
Context-aware Prefetching
for Near-Storage Accelerators

Jian Zhang, Marie Nguyen, Sanidhya Kashyap, Sudarsun Kannan

1

Caching and Prefetching are Important

• Caching and prefetching are both widely explored to enhance I/O
performance

• OS page cache (host-level caching) supports prefetching data from the
device to the host to reduce cache misses
• Prefetching system call in Linux (e.g., readahead, fadvise)

• Prefetching techniques often overlooked for near-storage accelerators!
• Challenge of near-storage accelerators: limited memory for caching and prefetching

2

• Background
• Motivation
• Design
• Evaluation
• Conclusion

3

Outline

Hardware Trends
• Near-storage accelerators (e.g., CSDs) can improve I/O performance and reduce

data movement costs
• E.g., Samsung SmartSSD, Newport CSDs and ScaleFlux CSDs

4

Computational Storage

• Hardware resources have up to 4-16 cores and around 4GB DRAM

• Unfortunately, device DRAM is still limited and frequently fills up
• reserved for internal tasks (e.g., internal storage software or FTL: 1MB DRAM

per 1GB)

• Careful management of device-level memory is crucial

Caching and Prefetching Designs

5

Host-level Caching
(PolarDB [FAST ’20], λ-IO [FAST ‘23], etc.)

App

readahead()

Page Cache
File System

Kernel

Storage

Near-storage Caching
(OmniCache [FAST ‘24])

App
FS Lib

Storage

write

Checksum-write

DevCache

Kernel

DRAM

HostCache

Host

Device

Host

Device

compression

• Background
• Motivation
• Design
• Evaluation
• Conclusion

6

Outline

Lack of Prefetching for Device Cache
• Host-level caching supports system call like readahead by only prefetching data to host cache

• Near-storage caching does not support prefetching for device cache

7

App
readahead()

Page Cache
File System

Kernel

Storage
DRAM

Host

Device

Host-level Caching

High kernel
overhead

Failure to utilize
device cache!

App
FS Lib

Storage

DevCache

KernelHostCache

Host

Device

Near-storage Caching

Load data
High I/O
latency!

read-compress-write()

Challenges to Prefetch Data in Device

• Device is unaware of the files currently in use by the host (lack of context)

• Managing smaller near-storage (DRAM) caches critical by supporting timely
eviction

• Applying kernel prefetching to the device is infeasible due to high
software overheads (e.g., system call, traversing the per-file xarray)

8

Storage

Device is Unaware of Host File Access

9

• Device lacks a context on current active file or object being accessed
• Prefetching on inactive files

App
FS Lib

DevCache

file2

Device

Host
file1

HostCache

Prefetch data
for file1

read

Near-storage Caching

read

(inactive) (active)

Timely Cache Eviction
• Limited device DRAM size used for near-storage caching leads to

frequent cache eviction of active files (and blocks)

10

Storage

file2

Device

Host
file1

HostCache

read close

Near-storage Caching

DevCache

PrefetchingActive data get
evicted!

App

• Background
• Motivation
• Design
• Evaluation
• Conclusion

11

Outline

Prefetching based on Cross-layered Context (CLC), a virtual entity
that spans across the host and the device and is used for managing active

and inactive data

12

ContextPrefetcher

Device

Active CLC

DevCache

Storage

Prefetch Eviction

Our Solution: ContextPrefetcher

Thread1
Context

Thread2
Context

CPU Context Switch

Inactive CLC

ContextPrefetcher Overview

• A host-guided high-performant prefetching framework

• Prefetch based on Cross-layered Context (CLC)
• A virtual entity that spans across the host and the device

• Use CLC to track active and inactive data such as files, objects
or a range of blocks

• Supports timely eviction of data associated with inactive CLC

13

App

ContextPrefetcher

Host

Device

Active CLC

DevCache

Storage

Inactive CLC

HostCache

Prefetch Eviction

Cross-layered Context (CLC)
• Cross-layered Context is a virtual entity used for tracking active/inactive data

• It could be files, objects (within object stores), or a range of blocks
• Each node in CLC has a bitmap to indicate each page is prefetched or not

14

Per-file range-tree
(file1)

Inactive CLC Active CLC

Prefetch
Eviction

1 0 0 01

ContextPrefetcher Example

15

UserLib

Device

Storage

DevCache

Thread1 pread(fd1, buf1, 4KB, 0)

Per-file range-tree (file1)

Inactive CLCActive CLC 1 0 0 01

Thread2 pread(fd2, buf2, 4KB, 0)
close(fd2)

Per-file range-tree (file2)

Prefetching data
for active CLC

Eviction data for
inactive CLC

ContextPrefetcher Challenges and Future Work

• Efficiently detect active and inactive context
• Possible solution: ML-based detection

• Collaboratively prefetch the data of files across host and device
• Possible solution: Parallel prefetching across devices or files

• Communication overhead between host and device for prefetching
• Possible solution: Vector-based I/O

16

• Background
• Motivation
• Design
• Evaluation
• Conclusion

17

Outline

Preliminary Evaluation
• Hardware platform

• Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
• 512GB Intel Optane DC NVM

• Emulated in-storage FS (no programmable storage H/W)
• Dedicate device threads for handling I/O requests
• Add PCIe latency for all I/O operations
• Reduce CPU frequency for device CPUs (and memory bandwidth)

• State-of-the-art designs
• FusionFS [FAST ‘22] (without caching and prefetching support)
• Emulated λ-IO without FPGA but with host-level OS caching and prefetching [FAST ‘23] (near-storage

design)
• OmniCache [FAST ‘24] (unified caching design for near-storage accelerators)

18

Microbench

Sequential Read

19

• Each thread concurrently opens multiple files, performs sequential/random read
• Employ total 20GB cache size
• OmniCache and ContextPrefetcher use 1GB DevCache

ContextPrefetcher improves I/O performance by efficient
prefetching and eviction

0

2

4

6

8

10

1 2 3 4

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

FusionFS
lambda-IO-emulate
OmniCache
ContextPrefetcher

0

2

4

6

1 4 16 32

T
hr

ou
gh

pu
t

(G
B/

s)

of threads
Random Read

• Background
• Motivation
• Design
• Evaluation
• Conclusion

20

Outline

Conclusion

21

• ContextPrefetcher: A novel context-aware prefetching approach for near-storage
devices
• Cross-layered Context (CLC), a virtual entity that spans across the host and the device

• ContextPrefetcher provides efficient prefetching and eviction based on CLC

• Achieves significant performance gains during our preliminary evaluation

Thanks! Q&A?

I’m on the job market!

