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Caching and Prefetching are Important

• Caching and prefetching are both widely explored to enhance I/O 
performance

• OS page cache (host-level caching) supports prefetching data from the 
device to the host to reduce cache misses
• Prefetching system call in Linux (e.g., readahead, fadvise)

• Prefetching techniques often overlooked for near-storage accelerators!
• Challenge of near-storage accelerators: limited memory for caching and prefetching
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Hardware Trends
• Near-storage accelerators (e.g., CSDs) can improve I/O performance and reduce 

data movement costs
• E.g., Samsung SmartSSD, Newport CSDs and ScaleFlux CSDs
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Computational Storage

• Hardware resources have up to 4-16 cores and around 4GB DRAM

• Unfortunately, device DRAM is still limited and frequently fills up
• reserved for internal tasks (e.g., internal storage software or FTL: 1MB DRAM 

per 1GB)

• Careful management of device-level memory is crucial



Caching and Prefetching Designs
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Lack of Prefetching for Device Cache
• Host-level caching supports system call like readahead by only prefetching data to host cache

• Near-storage caching does not support prefetching for device cache

7

App
readahead()

Page Cache
File System

Kernel

Storage
DRAM

Host

Device

Host-level Caching

High kernel 
overhead

Failure to utilize 
device cache!

App
FS Lib

Storage

DevCache

KernelHostCache

Host

Device

Near-storage Caching

Load data
High I/O 
latency!

read-compress-write()



Challenges to Prefetch Data in Device

• Device is unaware of the files currently in use by the host (lack of context)

• Managing smaller near-storage (DRAM) caches critical by supporting timely 
eviction

• Applying kernel prefetching to the device is infeasible due to high 
software overheads (e.g., system call, traversing the per-file xarray)
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Storage

Device is Unaware of Host File Access
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• Device lacks a context on current active file or object being accessed
• Prefetching on inactive files
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Timely Cache Eviction
• Limited device DRAM size used for near-storage caching leads to 

frequent cache eviction of active files (and blocks)
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Prefetching based on Cross-layered Context (CLC), a virtual entity 
that spans across the host and the device and is used for managing active 

and inactive data
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ContextPrefetcher Overview

• A host-guided high-performant prefetching framework

• Prefetch based on Cross-layered Context (CLC)
• A virtual entity that spans across the host and the device

• Use CLC to track active and inactive data such as files, objects 
or a range of blocks

• Supports timely eviction of data associated with inactive CLC
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Cross-layered Context (CLC)
• Cross-layered Context is a virtual entity used for tracking active/inactive data 

• It could be files, objects (within object stores), or a range of blocks
• Each node in CLC has a bitmap to indicate each page is prefetched or not

14

Per-file range-tree
(file1)

Inactive CLC Active CLC

Prefetch
Eviction

1 0 0 01



ContextPrefetcher Example
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ContextPrefetcher Challenges and Future Work

• Efficiently detect active and inactive context
• Possible solution: ML-based detection

• Collaboratively prefetch the data of files across host and device
• Possible solution: Parallel prefetching across devices or files

• Communication overhead between host and device for prefetching
• Possible solution: Vector-based I/O
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Preliminary Evaluation
• Hardware platform

• Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
• 512GB Intel Optane DC NVM

• Emulated in-storage FS (no programmable storage H/W)
• Dedicate device threads for handling I/O requests
• Add PCIe latency for all I/O operations
• Reduce CPU frequency for device CPUs (and memory bandwidth)

• State-of-the-art designs
• FusionFS [FAST ‘22] (without caching and prefetching support)
• Emulated λ-IO without FPGA but with host-level OS caching and prefetching [FAST ‘23] (near-storage 

design)
• OmniCache [FAST ‘24] (unified caching design for near-storage accelerators)
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Microbench

Sequential Read
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• Each thread concurrently opens multiple files, performs sequential/random read
• Employ total 20GB cache size
• OmniCache and ContextPrefetcher use 1GB DevCache

ContextPrefetcher improves I/O performance by efficient 
prefetching and eviction 
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Conclusion
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• ContextPrefetcher: A novel context-aware prefetching approach for near-storage 
devices
• Cross-layered Context (CLC), a virtual entity that spans across the host and the device

• ContextPrefetcher provides efficient prefetching and eviction based on CLC

• Achieves significant performance gains during our preliminary evaluation
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