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Erasure Coding (EC) Is Important

e EC plays a crucial role in modern distributed storage systems (DSS)
e Used in Ceph, HDFS, DAQOS, Azure, Colossus, etc.

e Ensure fault tolerance with less space overhead compared to traditional replication
e Tradeoff encoding/decoding computations for space efficiency

e |Increasingly valuable as data volume keeps growing
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Great Efforts Have Been Made, But ...

e Reed Solomon (RS) code, Regenerating codes (RGCs), Locally recoverable

codes (LRCs), Clay codes, ... in both theory and systems communities
e E.g., Plank@FAST’'09, Dimakis@TOIT'10, Gopalan@TOIT’12, Pamies-Juarez@FAST’16,
Kolosov@ATC'1S, ...
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Great Efforts Have Been Made, But ...

e Mostly only measure EC in (largely) simplified setups
e E.g., simulated DSS, limited EC/DSS parameters and faults, ...

e Different from how EC may be configured & used in practice
e E.g., a Ceph EC pool may be affected by various configurations

Config. Parameters | Options

Ceph storage backend | BlueStore, FileStore

BlueStore cache meta_ratio, kv_ratio, autotune, etc.
Ceph interface RADOS, RGW, RBD, CephFS

Num. of PGs in pool | customized, autoscale

EC plugin Jerasure, ISA, Clay, LRC, SHEC

EC technique reed_sol_van, cauchy_orig, etc.

EC failure domain device (OSD), host, rack, etc.

EC device class HDD, SSD

EC parameter k, m (equal to n-k), d, stripe_unit, etc.

Table. Highly configurable EC pool in Ceph
e Potential gap b/w theory and practice
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Can we bridge the gap?
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Outline

Motivati
e Methodology

e How to measure EC in practical systems
e Case Study: EC in Ceph

e What configurations can affect EC recovery time? To what extent?

e |s EC recovery time always the bottleneck?

e What is the impact on write amplification?

e Conclusion and Future Work

“Tech. details coming, feel free to fall asleep”
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Methodology

e Key Observation: EC is different from regular DSS operations
e Need controlled faults to trigger EC recovery in DSS systematically
e Need controlled configurations in multiple dimensions, e.g.:

e Locality and concurrency of faults

e Encoding: DSS regular code path

e Decoding: DSS failure handling code path
e Workload execution
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e Key Observation: EC is different from regular DSS operations
e Need controlled faults to trigger EC recovery in DSS systematically
e Need controlled configurations in multiple dimensions, e.g.:

e Locality and concurrency of faults

e Encoding: DSS regular code path
e Decoding: DSS failure handling code path

e Workload execution

e ECFault: A framework for measuring EC in practical DSS systematically
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Methodology

e Overview of ECFault components
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Methodology

e Overview of ECFault components
e Controller: Control overall configuration & execution of EC exps on target DSS

 EC Manager: manage all EC-related configurations in a profile

* Fault Injector: send fault injection requests to DSS nodes based on fault models
* Coordinator: orchestrate all activities
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Methodology

e Overview of ECFault components

e Controller: Control overall configuration & execution of EC exps on target DSS

 EC Manager: manage all EC-related configurations in a profile
* Fault Injector: send fault injection requests to DSS nodes based on fault models

* Coordinator: orchestrate all activities

e Worker: Manipulate the states of individual nodes
e Virtual disk provisioning via NVMe-oF to enable easy control of storage states

e Change DSS states based on Fault Injector’s requests
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Methodology

e Overview of ECFault components
e Controller: Control overall configuration & execution of EC exps on target DSS

 EC Manager: manage all EC-related configurations in a profile

* Fault Injector: send fault injection requests to DSS nodes based on fault models

* Coordinator: orchestrate all activities

e Worker: Manipulate the states of individual nodes
e Virtual disk provisioning via NVMe-oF to enable easy control of storage states

e Change DSS states based on Fault Injector’s requests

e Logger: Collect various logs to facilitate fine-grained measurement & analysis
DataNode )

e General I/O events
e DSS failure logs
e ECrecovery logs
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e Case Study: EC in Ceph
e What configurations can affect EC recovery time? To what extent?

e |s EC recovery time always the bottleneck?

e What is the impact on write amplification?

e Conclusion and Future Work



Case Study: EC in Ceph

e Platform
e 31-node Ceph cluster, 1 MON/MGR + 30 OSD nodes (AWS EC2 m5.xlarge)

e 6TB virtual storage capacity to Ceph

e Studied two classic codes w/ various configurations
e EC: Reed-Solomon (RS) & Clay codes
e Configuration parameters
e ECplugins: e.g., RS(12,9), Clay(12,9,11)
e Ceph: e.g., caching scheme, placement group, stripe unit

e Fault locality & concurrency: e.g., two/three concurrent OSD failures on the same or different
hosts



Case Study: EC in Ceph

e Result Summary
e Configurations may affect the EC recovery time significantly (e.g., up to 426%)
e Theoretically superior codes may actually perform worse under certain
configurations
e There is a system checking period before EC recovery that may account for 41% to

58% of the overall system recovery time
e ECitself may not necessarily be the bottleneck

e EC may introduce 32.3% to 72.0% more write amplification (WA) than the
theoretical expectation



Case Study: EC in Ceph

e Impact on EC recovery time: Caching Configuration
e Caching caused up to 11% difference
e Clay w/ kv-optimized led to worst recovery performance

e Even worse than traditional RS

o 1.6
S 1.4 m RS(12,9) m Clay(12,9,11)
= 1
: : : E 1.2 | 1.03 111 1.051.08 1 1.01
ID | Caching Scheme KV-ratio | Metadata-ratio | Data-ratio 3 1
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C1 kv-optimized 70% 20% 10% 2 os
C2 data-optimized 20% 20% 60% § 0.6
C3 || autotune (init value) 45% 45% 10% Té 0.4
£ 0.2
Table. Three Caching Configurations 2 o

kv-optimized data-optimized autotune
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Case Study: EC in Ceph

e I[mpact on EC recovery time: Placement Group (PG) & Stripe Unit (SU)
e PG configuration caused up to 35% difference

e SU configuration caused up to 426% difference
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Case Study: EC in Ceph

e Impact on EC recovery time: Fault
e The locality of three OSD failures may affect the relative performance of RS & Clay

e The main advantage of Clay over RS (e.g., reduction of repair network traffic) may
disappear with only three concurrent failures (on different hosts)
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Case Study: EC in Ceph

e Breakdown Analysis of Recovery

e System Checking Period + EC recovery period
» System Checking Period accounts for 53.7% of the overall system recovery time

Failure detected EC Recovery started EC Recovery finished
(0s) (602s) (1128s)

System Recovry Period

System Checking Period EC recovery period Time (sec)

? 200 400 600 800 1000 1 1200
I

ie— MGR log: receiving heartbeats —»- -4—MGRlog report recoveryI/O—u

0 OSD log: check recovery resource OOSD log: recovery completed
:‘ OSD log: startrecovery I/0

0| OSD log: collecting missing OSDs, queueing recovery
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Case Study: EC in Ceph

e Impact on Write Amplification (WA)
e WA is an undesirable phenomenon that can affect storage capacity, device lifetime,
system performance, etc. negatively

e Theoretical WA: n/k for EC(n, k)
e Actual WA Factor: actual storage usage divided by the write size of the workload

e The theoretical WA and the actual WA may change significantly depending on (n,k)
* E.g., from32.3%to 72.0%

ID | Code(n,k) Actual WA Factor | Diff. %
Jj1 | RS(12,9) [1.33 1.76 +32.3%
J2 | RS(15,12) | 1.25 2.15 +72.0%

S
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e Conclusion and Future Work



Conclusion & Future Work

e Configurations can affect EC in practical DSS significantly
e E.g., up to 426% in recovery time
e Theoretical advantage of codes may change depending on configurations

e Next Steps

e More rigorous measurement with practical configurations
e E.g., EC plugins, DSS, faults, workloads, etc

e Configuration-aware optimizations for EC and EC-based DSS
e Open Challenge: how to handle the (almost) infinite configuration space? Al/ML?
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Write Amplification related 1ssue

* Write amplification issue of EC in Ceph

* Given a fixed encoding unit size (stripe_unit) and fault tolerance capacity (n-
k), we find codes with larger n always have higher actual storage overhead

* Partially caused by division-and-padding

e Chunks smaller than stripe unit (undersized) will be padded to a standard encoding unit

* Chunks larger than stripe _unit (oversized) will be divided into smaller pieces first, and
these pieces are then padded to standard encoding units

stripe_unit

data chunk

stripe_unit

data chunk

Basic encoding unit

I:{>“data chunk

Basic encoding unit g

sub-chunk 1

=}

Basic encoding unit
sub- i
chunk 2
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What 1s the impact on write amplification?

* Write amplification issue of EC in Ceph

* Given a fixed encoding unit size (stripe_unit) and fault tolerance capacity (n-

k), we find codes with larger n always have higher actual storage overhead

 Partially caused by division-and-padding feature in Ceph

* To justify this issue, we design a farsightedness formula to show the lower bound of

actual WA.
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