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Erasure Coding (EC) Is Important

• EC plays a crucial role in modern distributed storage systems (DSS)
• Used in Ceph, HDFS, DAOS, Azure, Colossus, etc.
• Ensure fault tolerance with less space overhead compared to traditional replication

• Tradeoff encoding/decoding computations for space efficiency
• Increasingly valuable as data volume keeps growing
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Great Efforts Have Been Made, But …

• Reed Solomon (RS) code, Regenerating codes (RGCs), Locally recoverable 
codes (LRCs), Clay codes, … in both theory and systems communities

• E.g., Plank@FAST’09, Dimakis@TOIT’10, Gopalan@TOIT’12, Pamies-Juarez@FAST’16, 
Kolosov@ATC’18, ...

3



Great Efforts Have Been Made, But …

• Mostly only measure EC in (largely) simplified setups
• E.g., simulated DSS, limited EC/DSS parameters and faults, …

• Different from how EC may be configured & used in practice
• E.g., a Ceph EC pool may be affected by various configurations

• Potential gap b/w theory and practice 
Table. Highly configurable EC pool in Ceph
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Great Efforts Have Been Made, But …

Can we bridge the gap?
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Outline

“ Tech. details coming, feel free to fall asleep”

• Motivation
• Methodology

• How to measure EC in practical systems

• Case Study: EC in Ceph
• What configurations can affect EC recovery time? To what extent?
• Is EC recovery time always the bottleneck?
• What is the impact on write amplification?

• Conclusion and Future Work
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Methodology

• Key Observation: EC is different from regular DSS operations
• Need controlled faults to trigger EC recovery in DSS systematically
• Need controlled configurations in multiple dimensions, e.g.:

• Locality and concurrency of faults
• Encoding: DSS regular code path
• Decoding: DSS failure handling code path
• Workload execution
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• Key Observation: EC is different from regular DSS operations
• Need controlled faults to trigger EC recovery in DSS systematically
• Need controlled configurations in multiple dimensions, e.g.:

• Locality and concurrency of faults
• Encoding: DSS regular code path
• Decoding: DSS failure handling code path
• Workload execution

• ECFault: A framework for measuring EC in practical DSS systematically
• Three main components 

• Controller
• Worker
• Logger
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Methodology

• Overview of ECFault components
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Methodology
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• Overview of ECFault components
• Controller: Control overall configuration & execution of EC exps on target DSS

• EC Manager: manage all EC-related configurations in a profile
• Fault Injector: send  fault injection requests to DSS nodes based on fault models
• Coordinator: orchestrate all activities

• Worker: Manipulate the states of individual nodes
• Virtual disk provisioning via NVMe-oF to enable easy control of storage states
• Change  DSS states based on Fault Injector’s requests

• Logger:  Collect various logs to facilitate fine-grained measurement &  analysis
• General I/O events
• DSS failure logs
• EC recovery logs
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Case Study: EC in Ceph

• Platform
• 31-node Ceph cluster, 1 MON/MGR + 30 OSD nodes (AWS EC2 m5.xlarge)
• 6TB virtual storage capacity to Ceph

• Studied two classic codes w/ various configurations
• EC: Reed-Solomon (RS) & Clay codes
• Configuration parameters

• EC plugins: e.g., RS(12,9), Clay(12,9,11)

• Ceph: e.g., caching scheme, placement group, stripe unit

• Fault locality & concurrency: e.g., two/three concurrent OSD failures on the same or different 
hosts
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Case Study: EC in Ceph

• Result Summary
• Configurations may affect the EC recovery time significantly (e.g., up to 426%)
• Theoretically superior codes may actually perform worse under certain 

configurations
• There is a system checking period before EC recovery that may account for 41% to 

58% of the overall system recovery time
• EC itself may not necessarily be the bottleneck

• EC may introduce 32.3% to 72.0% more write amplification (WA) than the 
theoretical expectation
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Case Study: EC in Ceph

Table. Three Caching Configurations

• Impact on EC recovery time: Caching Configuration
• Caching caused up to 11% difference

• Clay w/ kv-optimized led to worst recovery performance

• Even worse than traditional RS
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Case Study: EC in Ceph

• Impact on EC recovery time: Placement Group (PG) & Stripe Unit (SU)
• PG configuration caused up to 35% difference
• SU configuration caused up to 426% difference
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Case Study: EC in Ceph

• Impact on EC recovery time: Fault
• The locality of three OSD failures may affect the relative performance of RS & Clay
• The main advantage of Clay over RS (e.g., reduction of repair network traffic) may 

disappear with only three concurrent failures (on different hosts)
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Case Study: EC in Ceph

• Breakdown Analysis of Recovery
• System Checking Period + EC recovery period

• System Checking Period accounts for 53.7% of the overall system recovery time
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Case Study: EC in Ceph

• Impact on Write Amplification (WA)
• WA is an undesirable phenomenon that can affect storage capacity, device lifetime, 

system performance, etc. negatively
• Theoretical WA: n/k for EC(n, k) 
• Actual WA Factor: actual storage usage divided by the write size of the workload
• The theoretical WA and the actual WA may change significantly depending on (n,k)

• E.g., from 32.3% to 72.0%
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• Configurations can affect EC in practical DSS significantly 
• E.g., up to 426% in recovery time
• Theoretical advantage of codes may change depending on configurations

• Next Steps
• More rigorous measurement with practical configurations

• E.g., EC plugins, DSS, faults, workloads, etc

• Configuration-aware optimizations for EC and EC-based DSS
• Open Challenge: how to handle the (almost) infinite configuration space? AI/ML?

Conclusion & Future Work
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Revisiting Erasure Codes: 
A Configuration Perspective

“Wake up! Coffee time!”

Q & A



Backup
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Write Amplification related issue

• Write amplification issue of EC in Ceph
• Given a fixed encoding unit size (stripe_unit) and fault tolerance capacity (n-
k), we find codes with larger n always have higher actual storage overhead

• Partially caused by division-and-padding
• Chunks smaller than stripe_unit (undersized) will be padded to a standard encoding unit
• Chunks larger than stripe_unit (oversized) will be divided into smaller pieces first, and 

these pieces are then padded to standard encoding units

33



What is the impact on write amplification?

• Write amplification issue of EC in Ceph

• Given a fixed encoding unit size (stripe_unit) and fault tolerance capacity (n-

k), we find codes with larger n always have higher actual storage overhead

• Partially caused by division-and-padding feature in Ceph

• To justify this issue, we design a farsightedness formula to show the lower bound of 

actual WA. 
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