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Cloud Video Storage System

[ 1. The growth of cloud video storage Cloud Storage
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Cloud Video Storage System

[ 1. The growth of cloud video storage | Cloud Storage | 2. Saturated cloud storage pricing ]
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Problem: Expensive Total Cost of Ownership(TCO)

[ 1. The growth of cloud video storage | Cloud Storage | 2. Saturated cloud storage pricing ]
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Existing approach: Multi-tiered cloud storage

Cloud Storage
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Existing approach: Multi-tiered cloud storage

Skewed access distribution
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Limitation: Restricted gain coverage

Skewed access distribution
Cloud Storage (C0|d video)
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New Opportunity on Cloud Video Storage System

Problem: Significant TCO for cloud video storage system

Observation

1. Most videos are accessed
infrequently(cold video)

D

2. Gain of multi-tiered storage is

limited

New approach:
Neural Cloud Storage




Our approach: Neural Cloud Storage(NCS)

Cloud Storage
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Goal: Reduce TCO of cloud video storage system

e Use neural enhancement to reduce storage cost
e Content-aware super-resolution

* Target video with low access frequency (cold video)




Content-aware Super-resolution

Super-resolution(SR)
* Enhances low-resolution(LR) videos to high-resolution(HR) versions

* Neural enhancement provides an opportunity to achieve
high-quality SR

Super-resolution(SR)
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Content-aware Super-resolution
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Why Content-aware Super-resolution?

Motivation
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1. Content-aware super-resolution reduce storage cost

Cloud Storage
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1. Content-aware super-resolution reduce storage cost

Cloud Storage
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1. Content-aware super-resolution reduce storage cost

Store Cloud Storage
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1. Content-aware super-resolution reduce storage cost

Cloud Storage
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[ Reduce the size of stored video ] [ Retrieve the video with high quality ]
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[ Reduce storage cost with high video quality ]
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Computing overhead of Content-aware SR
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2. Favorable for storing cold video
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[ Less computing overhead for storing cold video ]
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3. The price of computing is decreasing

The price trend of storage and computing instance of cloud provider(AWS)
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[ Using content-aware SR becomes more and more cost-effective ]




4. Clustering: Amortize training cost

Clustering: grouping videos with similar content(content redundancy)
Large number of videos in video platform -> clustering well

Cluster 1 Cluster 2 Cluster 3

ICIusterir}
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4. Clustermg Amortize training cost
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4. Clustering: Amortize training cost

Training cost can be amortized with

large amount of videos on video platform

Training cost / video

= =1/N



Total Cost of Ownership(TCO) of NCS

Original Low-resolution(LR) Cloud Storage Original-resolution Client

Video Video

e @j Video .
@ Compress @ Upload ) SR @ Access -

Cloud Computing

B Instance

Retrieval cost

4 )
il i l/

/

TCOpcs = + Retrieval cost +

23



NCS: High-level Overview
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Workflow of NCS
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1. Analyze

- Analyze video content and find cluster of the content

- If the cluster does not existed, create new cluster and train content-aware SR DNN -



Workflow of NCS

Analyze
»[ SR DNN Trainer
Cold
HR Video ( Clustering

DNN

DNN Complexity

Selection

/7 R\
Anchor Frame

LR Video

Ei?:

/

SR-aware bitrate

J

Encoder I‘

»

Metadata

Upload

2. Optimize

DNN

¥

» i 9 ©

HR Video

E&

Metadata

Access

- Profile video and generate metadata for SR-aware encoding/decoding

- The metadata is used for minimizing TCO of NCS

26



Optimization

SR-aware decoding
Reduce ~629% inference cost
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Workflow of NCS
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3. Encode

- Compress video into low-resolution with SR-aware encoding




Workflow of NCS
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- Restore video resolution by SR DNN
- Apply SR-aware decoding
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X2 scale

Evaluation setting

Dataset: Random videos on YouTube
Resolution of video: 1080p(FHD) — 2160p(4k)

HR
(2160p)

Cloud : Amazon Web Service(AWS)
Baseline: AWS multi-tiered storage (Standard, Infrequent, Glacier)

Metric: Total cost of ownership (TCO)
TCOpncs = Storage cost + Retrieval cost + Inference cost



Cost-benefit analysis of NCS

- NCS get more TCO gain with cold video
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Cost-benefit analysis of NCS

- NCS offers cost-effective storage for more cold videos
(< 33 access / year)
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Cost-benefit analysis of NCS

- NCS can save 14% TCO than baseline on these cold videos
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Conclusion

* Content-aware super-resolution brings new opportunity for storing
video in cloud storage cost-effectively

* We propose Neural Cloud Storage(NCS) that a cost-effective cloud
storage solution for cold video

* We envision the prototype of NCS and its potential with a cost-
benefit analysis
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