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Motivation

§Training a GPT-3 on 45 TB of data:

•💰 12 M

•⏰ 34 days on 1024 A100 GPUs

•🏠 17.5x the average yearly energy consumption 

of one American house.

•🚭 CO2 release of a car driving 2x the distance 

between the Earth and the Moon.

§Grand challenges in ML (Asi & Duchi, 2019)

Training time of image classification models has been doubling every 3.4 months (OpenAi, 2018)
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Contributors to Training Cost

§Two main bottlenecks:
• Number of gradient computations
• Data movement and I/O cost

Distribution of training time for training a ResNet50 model using an NVIDIA V100 GPU.

Is it equally important to train on 
every data point? 
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Subset Selection
§Training dataset 𝐷 = {(𝑥! , 𝑦!)}!"#$

§The goal of training is to find optimal parameters 𝜃  of a model Ψ . ; 𝜃  such that:

§𝜃 ∗	= 𝑚𝑖𝑛 #
$
∑!"#$ 𝐿(Ψ 𝑥!; 𝜃 , 𝑦!)

§Goal: Find subset 𝑆 ⊆ 𝐷 such that:
• 𝑆 = min 𝑆 	𝑠𝑡.

•𝑚𝑎𝑥! ∥ ∑"∈$∇𝐿" 𝜃 − ∑%∈&∇𝐿% 𝜃 ∥ 	≤ 𝜖 ,	where 𝜖 ≥ 0.
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Subset Selection – Assigning Importance

Selection Method Key Idea Pros Cons Examples

Trained models Infer importance post-
training

High accuracy Incurs more gradient 
computations than 
model trained on all data 
samples.

Toneva, ICLR’19
Zhang, NeurIPS’19
Coleman, ICLR’20
Zhao, ICLR’21 
….

Training dynamics Infer importance during 
training – loss values, 
clustering

Low cost solution Accuracy degradation Sener, ICLR’18
Katharopoulos, ICLR’18
Mirzasoleiman, ICML’20
….
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Prior Work – Limitations

PCIe 
Switch

§Limitation 1: High data 
movement.

§Traditional subset selection:
• Load data from disk to CPU memory
• Run selection algorithm to assign 

importance.
• Pass selected data samples to the 

GPU.
• Train on the selected data samples.
• Repeat every epoch

System Memory
CPU (Selection Algorithm)
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Steps involved in traditional subset selection



Prior Work – Limitations

§Traditional subset selection using training 
dynamics:
• Limitation 2: CPU-based selection – High selection 

time
• Limitation 3: Limited information - Accuracy 

degradation 
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Training time averaged across epochs for NeSSA, prior work, and a model 
trained on the full dataset.Subset (%) CRAIG K-Center NeSSA Goal

10 87.07 65.72 87.75 92.44

30 89.12 88.49 90.68 92.44

50 90.32 90.14 91.92 92.44

Accuracy when trained on different subset sizes on the CIFAR10 dataset using 
a ResNet20 model.



NeSSA System Design
§ Subset selection using FPGA-

based near-storage 
acceleration:
• Reduces data movement by |D|/|S|
• High-speed selection compared to 

CPU-based selection
• Energy efficient compared to GPU-

based selection
• Reconfigurable and scalable for 

different models and datasets 
compared to ASIC-based selection
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Selection Algorithm – High Accuracy, Low-Cost
§Goal: Find subset 𝑆 ⊆ 𝐷 such that:

§𝑆 = min 𝑆 	𝑠𝑡.
•𝑚𝑎𝑥! ∥ ∑"∈$∇𝐿" 𝜃 − ∑%∈&∇𝐿% 𝜃 ∥ 	≤ 𝜖 ,	where 𝜖 ≥ 0.

§Upper bound: 
•𝑚𝑖𝑛&⊆( ∥ ∑"∈) ∇𝐿" 𝜃 −	∑%∈&∇𝐿% 𝜃 ∥	≤ 	∑"∈$𝑚𝑖𝑛%∈& ∥ ∇𝐿" 𝜃 −	∇𝐿%(𝜃) ∥    
• RHS: k-medoids problem
• S is the set of medoids!

9Overview of the selection algorithm



Software Optimizations – High Accuracy, Speed, Minimum Subset Size
§ Quantize model on FPGA for 

inference.
§ Feedback of quantized model 

weights:
• Improve selection model over time.
• Select only those points which the 

model needs in that epoch.

§ Subset biasing:
• Selecting from unlearned samples.
• Drop samples with low loss every 

20 epochs.
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Hardware Optimizations – High-Speed Selection, Low-Cost
§ Quantization of model weights:
• 1-bit weights
• 2-bit activations
• 4-bit residuals
• 8-bit first / last layer weights

§ Dataset partitioning:
• Randomly partition dataset into several chunks and select a smaller subset from each chunk.
• No need to fit gradients of an entire class onto on-chip memory.
• Example: 

vMini-batch size m, subset size k, dataset size N
vPartition dataset into k/m random chunks
vSelect m examples from each chunk
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Evaluation Setup
§ Datasets and models evaluated:

§ GPU used: NVIDIA A100
§ SmartSSD v1.0:
• 3.84TB NAND
• Xilinx Kintex UltraScale+ KU15P FPGA
• 4GB DDR4 SDRAM

12

Dataset Classes Number of training 
samples

Network

CIFAR-10 10 50K ResNet-20
SVHN 10 73K ResNet-18
CINIC-10 10 90K ResNet-18
CIFAR-100 100 50K ResNet-18
TinyImageNet 200 100K ResNet-18
ImageNet-100 100 130K ResNet-50

PCIe Switch

SSD 
Controller

NAND

FPGA

DRAM

(P2P)

SmartSSDPCIe Switch



Performance – Accuracy, Convergence Speed-Up

Dataset All data (%) NeSSA (%) Subset (%)

CIFAR-10 92.02 90.17 28

SVHN 95.81 95.18 15

CINIC-10 81.49 80.26 30

CIFAR-100 70.98 69.23 38

TinyImageNet 63.40 63.66 34

ImageNet-100 84.60 83.76 28
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Accuracy comparison between NeSSA and training on the full data. 



Impact of Each Optimization
§ Vanilla: Medoid-based selection 

without any optimizations.
§ SB: medoid-based selection with 

subset biasing.
§ PA: medoid-based selection with 

dataset partitioning.
§ SB+PA: Medoid-based selection 

with both optimizations.
§ Goal: Accuracy when trained on 

the full dataset.
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Subset (%) Vanilla (%) SB (%) PA (%) SB+PA(%) Goal (%)

10 82.76 87.61 83.75 87.75 92.44

30 89.51 90.42 90.68 90.42 92.44

50 90.59 91.81 91.91 91.92 92.44

Impact of each optimization when training a ResNet20 model on the CIFAR-10 dataset.



Accelerator Design for Selection
§ Inference accelerator generated using 

FINN compiler:
• Deep neural network inference for FPGAs 
• Dataflow-style quantized neural networks
• Takes as input ONNX model trained in 

Brevitas:
vPytorch library for quantization-aware training. 
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Resource Available Utilization (%)
LUT 432K 67.53

FF 919K 23.14

BRAM 738 50.30

DSP 1962 42.67



Benefits of Using FPGA-Based Near-Storage Acceleration
§ 4.3x faster than CPU-based selection.
§ Without P2P between SSD and FPGA:
• Achievable bandwidth reduces from 3GBps to 1.4GBps.

§ Overall reduction of data movement over host-drive 
interconnect by an average of 3.5x.

§ Effects of increasing dataset size:
vCIFAR-10: 0.003MB/image, throughput: 1.46GBps
vImageNet-100: 0.126MB/image, throughput: 2.28GBps.

§ As dataset size increases, storage-assisted training 
becomes more effective and essential.

§ Overall end-to-end training speed-up of 5.4x.
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Data transfer throughput between FPGA and on-board SSD 
on SmartSSD



Conclusion
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§Motivation:
• Significantly reduce model training costs without affecting final model accuracy.

§Key Ideas:
• Use FPGA-based near-storage data selection to reduce training & data movement costs.
• Use feedback from target model to improve selection.
• Automatically reduce subset size over time.
• Quantize selection model to improve speed.

§Key Results:
• Data movement reduction of 3.5x.
• Training speed-up of 5.4x.
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Thank you!
Questions?

Repository:

Link: https://github.com/nehaprakriya/Near-
SSD-Data-Selection 
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