
Euidong Lee, Ikjoon Son, Jin-Soo Kim

Seoul National University

An Efficient Order-Preserving

Recovery for F2FS with ZNS

HotStorage’23

2

Problem : Data loss in F2FS Solution : Recovery technique which

uses the write pointer of ZNS

File A File ACrash

Loss of existing data

F2FS

OPRW : Order-Preserving Recovery

by Write pointer

WP WP WP

Zone

ZNS SSD

3

▪ Based on the log-structured filesystem

▪ Metadata : Node & CP, SIT, NAT, SSA, ...

▪ fsync() : Log only the direct nodes of a file

▪ Recovery : Roll-back & Roll-forward

CP SIT NAT SSA
Main Area

Node Node Node Data Data Data

In-place update Multi-head logging

4

▪ Make all dirty data and nodes in a file persistent

SSD

F2FS

D

N

F

Data

Node

Flush

Data SegmentNode Segment
Durable

Not DurableStorage

… …

write (file A, block #0, 4KB)

+ fsync (file A)

5

▪ Make all dirty data and nodes in a file persistent

Data SegmentNode Segment
Durable

Not DurableStorage

SSD

F2FS

… D(A)…

D

N

F

Data

Node

Flush

D

DMA

write (file A, block #0, 4KB)

+ fsync (file A)

6

▪ Make all dirty data and nodes in a file persistent

Data SegmentNode Segment
Durable

Not DurableStorage

SSD

F2FS

N(A)
fsync

… D(A)…

D

N

F

Data

Node

Flush

D N

DMA DMA

Contain a block map pointing to data blocks

write (file A, block #0, 4KB)

+ fsync (file A)

7

▪ Make all dirty data and nodes in a file persistent

Data SegmentNode Segment
Durable

Not DurableStorage

Persist data and nodes

SSD

F2FS

fsync() - posix

N(A)
fsync

… D(A)…

D

N

F

Data

Node

Flush

D FN

DMA FLUSHDMA

E

8

▪ Make all dirty data and nodes in a file persistent

Data SegmentNode Segment
Durable

Not DurableStorage

PLP devices guarantee data persistence without a flush command

SSD

F2FS

fsync() - posix

N(A)
fsync

… D(A)…

D

N

F

Data

Node

Flush

D FN

DMA FLUSHDMA

E

fsync() - nobarrier

9

▪ Make all dirty data and nodes in a file persistent

Data SegmentNode Segment
Durable

Not DurableStorage

SSD

F2FS

N(A)
fsync

N(A')
fsync

… D(A) D(A’)…

D

N

F

Data

Node

Flush

D FN

DMA FLUSHDMA

E D FN

DMA FLUSHDMA

E

write (file A, block #0, 4KB)

+ fsync (file A)
write (file A, block #0, 4KB)

+ fsync (file A)

10

▪ Recover node blocks written after the last checkpoint

• Mark old blocks as invalid and new blocks as valid to SIT

• Update node address in NAT

Node

Segment
N(A)
fsync

NAT SIT

Consistent state

NAT SIT

Consistent state + Delta

Roll-back

(checkpointed)

…
Data

Segment
D(A) D(A’)

Roll-forward

N(A’)
fsync

……

11

▪ Recover node blocks written after the last checkpoint

• Mark old blocks as invalid and new blocks as valid to SIT

• Update node address in NAT

Node

Segment
N(A)
fsync

Roll-back

(checkpointed)

…
Data

Segment
D(A) D(A’)

Roll-forward

N(A’)
fsync

Read node A

……

NAT SIT

Consistent state + Delta

NAT SIT

Consistent state

12

▪ Recover node blocks written after the last checkpoint

• Mark old blocks as invalid and new blocks as valid to SIT

• Update node address in NAT

Node

Segment
N(A)
fsync

Roll-back

(checkpointed)

…
Data

Segment
D(A) D(A’)

Roll-forward

N(A’)
fsync

Update metadata

……

Mark new blocks referenced by the node as valid

NAT SIT

Consistent state + Delta

NAT SIT

Consistent state

13

▪ Recover node blocks written after the last checkpoint

• Mark old blocks as invalid and new blocks as valid to SIT

• Update node address in NAT

Node

Segment
N(A)
fsync

Roll-back

(checkpointed)

…
Data

Segment
D(A) D(A’)

Roll-forward

N(A’)
fsync

……

Compare the block map with

that of the existing node

NAT SIT

Consistent state + Delta

NAT SIT

Consistent state

Invalid

Valid

14

▪ F2FS has a risk of data corruption, when a crash occurs during fsync()

0xAAAA

0xAAAA

0xAAAA

0xAAAA

write(File A, “0xBBBB”);

fsync();

A crash occurs during fsync()

0xAAAA

0xAAAA

0x0000

0x0000

File A File A after a crash

OK

Loss of existing data

Data consistency violation !

15

▪ Node blocks can be persisted before data blocks become durable

▪ Node may point to garbage data, resulting in loss of existing data

< fsync() >

F2FS

SSD DMA

D FN

DMA FLUSH ing…

Die 0

Die 1

Node

Segment …

Data

Segment

N(A)
new

…

D(A)
existing

… … D(A)
new

N(A)
existing

Durable

Not Durable

16

▪ Node blocks can be persisted before data blocks become durable

▪ Node may point to garbage data, resulting in loss of existing data

< fsync() >

F2FS

SSD DMA

D FN

DMA FLUSH

Die 0

Die 1

Write - Node

Write - DataNAND Busy

Node

Segment …

Data

Segment

N(A)
new

…

D(A)
existing

… … D(A)
new

N(A)
existing

Durable

Not Durable

17

▪ Node blocks can be persisted before data blocks become durable

▪ Node may point to garbage data, resulting in loss of existing data

< fsync() >

F2FS

SSD DMA

D FN

DMA FLUSH

Die 0

Die 1

Write - Node

Write - DataNAND Busy

Node

Segment …

Data

Segment

N(A)
new

…

D(A)
existing

… … D(A)
new

N(A)
existing

Durable

Not Durable

point to garbage data!

18

▪ Node blocks can be persisted before data blocks become durable

▪ Node may point to garbage data, resulting in loss of existing data

< fsync() >

F2FS

SSD DMA

D FN

DMA FLUSH

Die 0

Die 1

Write - Node

Write - DataNAND Busy

Node

Segment …

Data

Segment

N(A)
new

…

D(A)
existing

… … D(A)
new

N(A)
existing

Roll-back

(checkpointed) Roll-forward

Durable

Not Durable< Recovery>

Recovered

By roll-forward

19

▪ Node blocks can be persisted before data blocks become durable

▪ Node may point to garbage data, resulting in loss of existing data

< fsync() >

Node

Segment …

Data

Segment

N(A)
new

…

D(A)
existing

… … D(A)
new

N(A)
existing

Roll-back

(checkpointed) Roll-forward

Durable

Not Durable< Recovery>

Lost!

F2FS

SSD DMA

D FN

DMA FLUSH

Die 0

Die 1

Write - Node

Write - DataNAND Busy

20

▪ Enforce write order between data and nodes during fsync()
• Pros : fast recovery

• Cons : performance degradation due to a flush operation

▪ e.g. strict mode in F2FS
• Use atomic writes, inserting a flush command before the last node block

D

N

F

Data

Node

Flush

SSD DMA

D FN

fsync() - strict

DMA FLUSH

F2FS N’

DMA FLUSH

N’ Last Node

+ FUA

21

▪ Detect write order reversal during filesystem recovery

• Pros : high performance in fsync()

• Cons : long recovery time

▪ Difficult to determine persistence of data blocks in the block interface

• Requires additional metadata and I/O operations

Is there a way to efficiently identify the persistence of data blocks ?

22

▪ Can be utilized to efficiently determine the validity of blocks

• (LBAs < write pointer) → written, valid

• (LBAs >= write pointer) → erased, invalid

▪ No I/O operations required

Written Erased

Zone start Zone endWrite pointer

23

▪ Ensure data consistency during recovery with low overhead

▪ Check all nodes for data consistency during the roll-forward process

• Exclude nodes with data loss from the recovery target

N N N NN N N N

Roll-back

(checkpointed)

NAT SIT

Consistent state

N N N NN N N N

ErasedE

Data

NodeN

D

24

▪ Ensure data consistency during recovery with low overhead

▪ Check all nodes for data consistency during the roll-forward process

• Exclude nodes with data loss from the recovery target

N N N NN N N NN N N NN N N N

Roll-back

(checkpointed)
Roll-forward

with data consistency checks

NAT SIT

Consistent state + Delta

ErasedE

Data

NodeN

D

NAT SIT

Consistent state

25

▪ Ensure data consistency during recovery with low overhead

▪ Check all nodes for data consistency during the roll-forward process

• Exclude nodes with data loss from the recovery target

N N N NN N N NN N N NN N N N

Roll-back

(checkpointed)
Roll-forward

with data consistency checks

Data corruption!

Drop it !

Node A

0 1 …Index
Block

D D E E

ErasedE

Data

NodeN

D
WP

NAT SIT

Consistent state + Delta

NAT SIT

Consistent state

Invalid

26

▪ Ensure data consistency during recovery with low overhead

▪ Check all nodes for data consistency during the roll-forward process

• Exclude nodes with data loss from the recovery target

N N N NN N N NN N N NN N N N

Roll-back

(checkpointed)
Roll-forward

with data consistency checks

Data corruption!

Drop it !

Node A

0 1 …Index
Block

D D E E

WP

Existing node remains intact

ErasedE

Data

NodeN

D

NAT SIT

Consistent state + Delta

NAT SIT

Consistent state

Valid

27

▪ Ensure data consistency during recovery with low overhead

▪ Check all nodes for data consistency during the roll-forward process

• Exclude nodes with data loss from the recovery target

N N N NN N N NN N N NN N N N

Roll-back

(checkpointed)
Roll-forward

with data consistency checks
Skip nodes of

corrupted inodes

Same inode

ErasedE

Data

NodeN

D

Data corruption!

Drop it !

NAT SIT

Consistent state + Delta

NAT SIT

Consistent state

28

▪ Load the entire write pointer table into memory once at boot time

▪ Check each entry to see if it is less than the write pointer

• (address >= write pointer) → corrupted node

Node block

Block Map

…

D D D D D D D E

Zone 0 Zone 1

LBA 0

0 1 2 3 …
1 2 5 7 …

Index
Block

29

▪ Load the entire write pointer table into memory once at boot time

▪ Check each entry to see if it is less than the write pointer

• (address >= write pointer) → corrupted node

Node block

Block Map

…

WP

LBA 4

WP

LBA 7

D D D E

Zone 0 Zone 1

LBA 0

D D D D

0 1 2 3 …
1 2 5 7 …

Index
Block

30

▪ Load the entire write pointer table into memory once at boot time

▪ Check each entry to see if it is less than the write pointer

• (address >= write pointer) → corrupted node

Node block

Check data consistency

0 1 2 3 …
1 2 5 7 …

Index
Block

Block Map

…

WP

LBA 4

WP

LBA 7

Zone 0 Zone 1

LBA 0

D D D D D D D E

31

▪ Load the entire write pointer table into memory once at boot time

▪ Check each entry to see if it is less than the write pointer

• (address >= write pointer) → corrupted node

Node block

Check data consistency

Block Map

…

WP

LBA 4

for (i = 0; i < # index; i++) {

If (block_map[i] < write pointer)

continue; /* written, valid */

else

break; /* erased, invald */

}

WP

LBA 7

Zone 0 Zone 1

LBA 0

D D D D D D D E

0 1 2 3 …
1 2 5 7 …

Index
Block

32

▪ Load the entire write pointer table into memory once at boot time

▪ Check each entry to see if it is less than the write pointer

• (address >= write pointer) → corrupted node

Node block

Check data consistency

Block Map

…

WP

LBA 4

for (i = 0; i < # index; i++) {

If (block_map[i] < write pointer)

continue; /* written, valid */

else

break; /* erased, invald */

}

WP

LBA 7

Zone 0 Zone 1

LBA 0

Valid

D D D D D D D E

0 1 2 3 …
1 2 5 7 …

Index
Block

33

▪ Load the entire write pointer table into memory once at boot time

▪ Check each entry to see if it is less than the write pointer

• (address >= write pointer) → corrupted node

Node block

Check data consistency

Block Map

…

WP

LBA 4

for (i = 0; i < # index; i++) {

If (block_map[i] < write pointer)

continue; /* written, valid */

else

break; /* erased, invald */

}

WP

LBA 7

Zone 0 Zone 1

LBA 0

Invalid

D D D D D D D E

0 1 2 3 …
1 2 5 7 …

Index
Block

Valid

Data loss occurs !

34

▪ No need to enforce the write order during fsync()

• OPRW ensures data consistency during the recovery process

<F2FS>

<OPRW>

SSD

F2FS

DMA

D FN

fsync()-posix

DMA FLUSH

fsync()-nobarrier

D
N

F
Data
Node

Flush

SSD DMA

D FN

fsync()-posix

DMA FLUSH

F2FS

fsync()-nobarrier

35

▪ Platform

• Intel Xeon Silver 4116 2.10GHz

• 5.14.4 Kernel

▪ Storage

• Western Digital ZN540 : Supporting Power-Loss Protection (PLP)

• NVMeVirt (FAST 23’) : Emulating ZN540 without PLP

▪ Workload

• FIO, Varmail, OLTP-Insert

36

▪ Sequence

1. Fill the file with the specific pattern

2. Write the same pattern in the file

3. Inject a crash at a random time

4. Check to see if the pattern matches, after the file system is restored.

Failure Rate

F2FS-posix 3%

F2FS-strict 0%

OPRW-posix 0%

<Result>

0xDEAD

0xDEAD

0xDEAD

0xDEAD

0xDEAD

File A File A

0xDEAD

0xDEAD

0x0

0x0

0xDEAD

crash!
Data Mismatch → Fail

37

▪ OPRW can ensure data consistency, without sacrificing performance

5.2
9.8

18.9

34.6

59.8

2.8 5.3
10.5

19.9

36

5.4
10

19.3

35.5

60.5

0

20

40

60

80

4KB 8KB 16KB 32KB 64KB

Th
ro

u
gh

p
u

t
(M

iB
/s

)

F2FS-posix
F2FS-strict
OPRW-posix 1.68x

<FIO, random write + fsync>

6.92

4.1

6.97

0

2

4

6

8

K
 o

p
s/

s

462

246

470

0

200

400

600

Tx
/s

<Varmail> <OLTP-Insert>

38

▪ OPRW has a negligible impact on recovery time

scanned

node
40791 50962 57500

F2FS

(ms)
4177 7307 9751

OPRW

(ms)
4380 7584 10093

Difference

(ms)
+203 +277 +342

<Roll-forward execution time>

39

▪ F2FS does not suffer from data consistency issues on PLP devices

▪ But OPRW can still provide performance gains

<FIO, random write + fsync>

82

98

0

20

40

60

80

100

120

K
 o

p
s/

s

1.2x

5711
6293

0

2000

4000

6000

8000

Tx
/s

1.1x

<Varmail> <OLTP-Insert>

93
156

246

360

457

132

221

331

455

540

0

200

400

600

800

4KB 8KB 16KB 32KB 64KB

Th
ro

u
gh

p
u

t
(M

iB
/s

)

F2FS-nobarrier

OPRW-nobarrier

1.4x

40

▪ Point out the data corruption problem in F2FS

▪ Observe that write pointers can be used to determine the validity of data

▪ Propose OPRW technique using the write pointer provided by ZNS

• Ensure data consistency with minimal overhead

• Improve fsync() performance by removing synchronization actions

41

	슬라이드 1
	슬라이드 2: Overview
	슬라이드 3: F2FS Filesystem
	슬라이드 4: fsync() in F2FS
	슬라이드 5: fsync() in F2FS
	슬라이드 6: fsync() in F2FS
	슬라이드 7: fsync() in F2FS
	슬라이드 8: fsync() in F2FS
	슬라이드 9: fsync() in F2FS
	슬라이드 10: Roll-Forward in F2FS
	슬라이드 11: Roll-Forward in F2FS
	슬라이드 12: Roll-Forward in F2FS
	슬라이드 13: Roll-Forward in F2FS
	슬라이드 14: Data Corruption in F2FS (1/2)
	슬라이드 15: Data Corruption in F2FS (2/2)
	슬라이드 16: Data Corruption in F2FS (2/2)
	슬라이드 17: Data Corruption in F2FS (2/2)
	슬라이드 18: Data Corruption in F2FS (2/2)
	슬라이드 19: Data Corruption in F2FS (2/2)
	슬라이드 20: Naïve Solution - Pessimistic Approach
	슬라이드 21: Naïve Solution - Optimistic Approach
	슬라이드 22: Observation - Write Pointer of ZNS
	슬라이드 23: Order-Preserving Recovery by Write Pointer
	슬라이드 24: Order-Preserving Recovery by Write Pointer
	슬라이드 25: Order-Preserving Recovery by Write Pointer
	슬라이드 26: Order-Preserving Recovery by Write Pointer
	슬라이드 27: Order-Preserving Recovery by Write Pointer
	슬라이드 28: Data Consistency Check for a Node
	슬라이드 29: Data Consistency Check for a Node
	슬라이드 30: Data Consistency Check for a Node
	슬라이드 31: Data Consistency Check for a Node
	슬라이드 32: Data Consistency Check for a Node
	슬라이드 33: Data Consistency Check for a Node
	슬라이드 34: Performance Improvement
	슬라이드 35: Evaluation Setup
	슬라이드 36: Data Consistency Test
	슬라이드 37: Performance of fsync() – Non-PLP Device
	슬라이드 38: Recovery Time
	슬라이드 39: Performance of fsync() – PLP Device
	슬라이드 40: Conclusion
	슬라이드 41: Thanks! Any Questions?

