An Efficient Order-Preserving
Recovery for F2FS with ZNS

HotStorage'23

Euidong Lee, ikjoon Son, Jin-Soo Kim
Seoul National University

W2

\/

\,, .
v .ﬁﬁl v
¥ W
%ILJ‘?

/"i‘-b).(é&'\

Overview

Problem : Data loss in F2FS

File A

Crash

\

File A

>

Loss of existing data

Solution : Recovery technique which

uses the write pointer of ZNS

F2FS

OPRW : Order-Preserving Recovery
by Write pointer

N
Z\
ZNS SS\D/—/ \v
WP WP WP
y ¥

Zone |

F2FS Filesystem

* Based on the log-structured filesystem
* Metadata : Node & CP SIT, NAT, SSA, ...
= fsync() : Log only the direct nodes of a file

= Recovery : Roll-back & Roll-forward

In-place update

Multi-head logging

<€

CP

SIT

NAT

SSA

Main Area

Node || Node || Node Data

Data

Data

fsync() in F2FS

* Make all dirty data and nodes in a file persistent

write (file A, block #0, 4KB) N | Node
+ fsync (file A) D | Data
l F Flush
F2FS
SSD
Storage

Node Segment Data Segment Not Durable

Durable

fsync() in F2FS

* Make all dirty data and nodes in a file persistent

write (file A, block #0, 4KB) N | Node
+ fsync (file A
Y | () | D | Data
L< > F Flush
F2FS D :
SSD S
StO I’age Not Durable

Node Segment

Data Segment

D(A)

Durable

O

fsync() in F2FS

* Make all dirty data and nodes in a file persistent

write (file A, block #0, 4KB)

N | Node
+ fsync (file A) D | Data
i ‘€ >! F | Flush
F2FS D N :
SSD DMA DMA
Sto ra’ge Node Segment Data Segment Not Durable
Durable
N(A) D(A)
fsync

A

Contain a block map pointing to data blocks

6

fsync() in F2FS

Make all dirty data and nodes in a file persistent

fsync() - posix

| ! N | Node
:< >: D | Data
i :< > F | Flush

F2Fs — D N F] E|

SSD DMA DMA FLUSH
Storage

Node Segment

Data Segment

N(A)
o fsync

Not Durable

Durable

Persist data and nodes

fsync() in F2FS

Make all dirty data and nodes in a file persistent

| fsync() - posix ! Node
| € g Data
I - b 1 I :
i < fsync() - nobarrier . _i Flush
—
F2FS D Fi E|
SSD DMA DMA FLUSH
Sto ra’ge Node Segment Data Segment Not Durable
Durable
N(A)
fsync D(A)

PLP devices guarantee data persistence without a flush command

fsync() in F2FS

* Make all dirty data and nodes in a file persistent

N | Node
write (file A, block #0, 4KB) write (file A, block #0, 4KB) D | Data
+ f file A + fsync (file A
syncI: (file A) Y |() = Flush
H H
F2Fs — D N Fl e —{o N Fl g
: T ‘o 0 : + ‘o A
v 1 v 1l v | v I v 1l v |
SSD DMA DMA FLUSH DMA DMA FLUSH [——
Sto ra’ge Node Segment Data Segment Not Durable

Durable
N(A) [N(A’ ,
fssnc)| fssnc)l .. |p@ ‘D(A)l

A

Roll-Forward in F2FS

= Recover node blocks written after the last checkpoint

 Mark old blocks as invalid and new blocks as valid to SIT

* Update node address in NAT

Node
Segment

Roll-back |
(checkpointed) >: Roll-forward
N(A) | N(A)
fsync fsync
i
|
I
I
|
NAT SIT I NAT SIT
|
I

Consistent state

Consistent state + Delta

Data
Segment

D(A)

D(A)

Roll-Forward in F2FS

= Recover node blocks written after the last checkpoint

* Mark old blocks as invalid and new blocks as valid to SIT

* Update node address in NAT

Node
Segment

Roll-back |
(checkpointed) >: Roll-forward
N(A) | N(A)
fsync fsync
' Read node A
|
|
|
NAT SIT I NAT || SIT
|
|

Consistent state

Consistent state + Delta

Data
Segment

D(A)

D(A)

Roll-Forward in F2FS

= Recover node blocks written after the last checkpoint

e Mark old blocks as invalid and new blocks as valid to SIT
* Update node address in NAT

Roll-back
(checkpointed) | Roll-forward
> >
Node N(A) | Na) Data
... |D(A)|DA’
Segment fsync fsync Segment () ()
!
: Mark new blocks referenced by the node as valid
I O
NAT || siT | NAT || siT Update metadata
|
|

Consistent state Consistent state + Delta

Roll-Forward in F2FS

= Recover node blocks written after the last checkpoint

e Mark old blocks as invalid and new blocks as valid to SIT
* Update node address in NAT

Node
Segment

Roll-back |
(checkpointed) | Roll-forward
> >
NEA) [N(A’)
fsyne | fsync
] |
T N R
|
I
I
| O O
NAT SIT | NAT SIT
I O
I

Consistent state

Consistent state + Delta

Data

Segment ... |BA)|DA’)

Invalid

Valid

Compare the block map with
that of the existing node

Data Corruption in F2FS (1/2)

" F2FS has a risk of data corruption, when a crash occurs during fsync()

File A

0xAAAA
0xAAAA

write(File A,“OxBBBB”);

fsync();
A crash occurs during fsync()

File A after a crash

5| OxAAAA

0xAAAA
0xAAAA

\

0xAAAA

;| 0x0000

\

0x0000

OK

Loss of existing data
Data consistency violation !

14

Data Corruption in F2FS (2/2)

* Node blocks can be persisted before data blocks become durable

* Node may point to garbage data, resulting in loss of existing data

F2FS |

SSD

Die O

< fsync() >

DMA

DMA

FLUSH ing...

Die |

Node
Segment

Data

Segment

Not Durable

Durable

N(A)

existing

N(A)

new

\

\

‘\

\

7

37

D(A)

existing

D(A)

new

Data Corruption in F2FS (2/2)

* Node blocks can be persisted before data blocks become durable

* Node may point to garbage data, resulting in loss of existing data

< fsync() >

F2FS { D N F

4
! I I [
v 4

SSD 1 pma DMA

FLUSH

Die O

Write - Node

1
I
|
1
v

Die | NAND Busy

Write - Data

Node
Segment

Data
Segment

Not Durable

Durable

N(A)

existing

N(A)

new

\

\

‘\

\

7

37

D(A)

existing

D(A)

new

16

Data Corruption in F2FS (2/2)

* Node blocks can be persisted before data blocks become durable

* Node may point to garbage data, resulting in loss of existing data

F2FS |

SSD

Die O

< fsync() >

FL

USH

Die | NAND Busy

1
I
|
1
v

Write - Node

Write - Data

Node

Segment

Data

Segment

Not Durable

Durable

N(A) N(A)
existing o new
\\\ \\
7 .7
D(A) D(A)
existing o new

point to garbage data!

17

Data Corruption in F2FS (2/2)

* Node blocks can be persisted before data blocks become durable

* Node may point to garbage data, resulting in loss of existing data

F2FS

SSD

Die O

Die | NAND Busy

1 D

< fsync() >

FLUSH

1
I
|
1
v

Write - Node

Write - Data

< ReCOVEI"Y> Not Durable
Roll-back Durable
(checkpointed) Roll-forward
> >
Node
N(A N(A
Segment exifﬁng Recovered
A By roll-forward
* *
Data D(A) D(A)
Segment existing new

18

Data Corruption in F2FS (2/2)

* Node blocks can be persisted before data blocks become durable

* Node may point to garbage data, resulting in loss of existing data

F2FS

SSD

Die O

Die | NAND Busy

1 D

< fsync() >

FL

USH

1
I
|
1
v

Write - Node

Write - Data

< Recovery>
Roll-back

(checkpointed) : Roll-forward

Not Durable

Durable

>

Node
Segment

Data
Segment

> |

existing new

D(A)

new

19

Naive Solution - Pessimistic Approach

* Enforce write order between data and nodes during fsync()
* Pros :fast recovery
* Cons : performance degradation due to a flush operation

" e.g.strict mode in F2FS
* Use atomic writes, inserting a flush command before the last node block

N’ Last Node N Node
+ FUA D Data
| fsync() - strict F | Flush!
F2FS - * :
L 1
¥ '
SSD DMA DMA FLUSH DMA FLUSH —

20

Naive Solution - Optimistic Approach

* Detect write order reversal during filesystem recovery
* Pros : high performance in fsync()
* Cons :long recovery time

= Difficult to determine persistence of data blocks in the block interface

* Requires additional metadata and I/O operations

Is there a way to efficiently identify the persistence of data blocks ?

21

Observation - VWrite Pointer of ZNS

= Can be utilized to efficiently determine the validity of blocks

* (LBAs < write pointer) => written, valid
* (LBAs >= write pointer) = erased, invalid

* No I/O operations required

Zone start

I
v

Write pointer

I
v

Zone end

|
|
A 4

Written

Erased

Order-Preserving Recovery by Write Pointer

* Ensure data consistency during recovery with low overhead

" Check all nodes for data consistency during the roll-forward process

* Exclude nodes with data loss from the recovery target

Roll-back N| Node
(checkpointed) I D| Data
> : E | Erased

NAT SIT

Consistent state
23

Order-Preserving Recovery by Write Pointer

* Ensure data consistency during recovery with low overhead

" Check all nodes for data consistency during the roll-forward process

* Exclude nodes with data loss from the recovery target

Roll-back Roll-forward g l\[l)ode
(checkpointed) I with data consistency checks ata
> > E | Erased

NINININIPTININININIPTININININIPTININININ

L]
‘ NAT SIT

Consistent state + Delta

NAT SIT

Consistent state
24

Order-Preserving Recovery by Write Pointer

* Ensure data consistency during recovery with low overhead

" Check all nodes for data consistency during the roll-forward process

* Exclude nodes with data loss from the recovery target

Data corruption!

D

E

Roll-back Roll-forward Drop it!

(checkpointed) :with data consistency checks : :

> 2 [

Ly
N[NIN|IN|[NN"NNNN"NNN

|

|

| v

' = Node A
NAT | | SIT : NAT | | SIT

|

|

1

Consistent state

Consistent state + Delta

A
/: nvalid

Node

Data
Erased

25

Order-Preserving Recovery by Write Pointer

* Ensure data consistency during recovery with low overhead

" Check all nodes for data consistency during the roll-forward process

* Exclude nodes with data loss from the recovery target

Roll-back

Roll-forward

Data corruption!
Drop it !

(checkpointed) :with data consistency checks : : WP
> | > [:
y \I/
NIN[N|[N|[] NN"NNN"NNNN D|E
N
e
I Existing node remains intact "‘~\V Valid
|
: . NodeA/ /
NAT SIT ' NAT SIT
| Index | 0
: Block
1

Consistent state

Consistent state + Delta

Node

Data
Erased

26

Order-Preserving Recovery by Write Pointer

* Ensure data consistency during recovery with low overhead

" Check all nodes for data consistency during the roll-forward process

* Exclude nodes with data loss from the recovery target

Roll-back

(checkpointed)

Roll-forward

Data corruption!

Drop it !

: with data consistency checks ! :

Skip nodes of

corrupted inodes

Consistent state

Consistent state + Delta

> (1>
NINININ| P NINIPTINININ 21 ININ|IN|N
: \
|
I Same inode
I L
NAT | | sIT : ‘NAT SIT
|
|

Node

Data
Erased

27

Data Consistency Check for a Node

" | oad the entire write pointer table into memory once at boot time

" Check each entry to see if it is less than the write pointer

* (address >= write pointer) = corrupted node

LBA O
: Zone 0 Zone |
Node block |‘V 515D TE
Block Map r-~_ DIDIDJD
~-d Index [OJI1 237,
Block |1 [2]|5]7].

Data Consistency Check for a Node

" | oad the entire write pointer table into memory once at boot time

" Check each entry to see if it is less than the write pointer

* (address >= write pointer) = corrupted node

WP WP
LBA O LBA 4 LBA 7
| ZoneO | Zone | |
Node block |-v *—‘ ST515 v =
Block Map r-~_ DIDIDJD
~-d Index [OJI1 237,
Block |1 [2]|5]7].

Data Consistency Check for a Node

" | oad the entire write pointer table into memory once at boot time

" Check each entry to see if it is less than the write pointer

* (address >= write pointer) = corrupted node

WP WP
LBA O LBA 4 LBA 7
| ZoneO | Zone | |
Node block |-v *—‘ ST515 v =
Block Map r-~_ DIDIDJD
"~-d Index [OJI1]2]3
Block | (257

Check data consistency

Data Consistency Check for a Node

" | oad the entire write pointer table into memory once at boot time

" Check each entry to see if it is less than the write pointer

* (address >= write pointer) = corrupted node

WP WP
LBA 0 LBA 4 LBA 7
. Zone0 | :
Node block l ' onel | for (i = 0;1 < # index; i++) {
ode bloc I_" 5IDIDID *_‘ DIDIDIE If (block_mapl[i] < write pointer)
Block Map [F--_ continue; /* written, valid */
\\\ else
el rdex TOTTT213 break; /* erased, invald */
Block [1]12]|5][7 }

Check data consistency

31

Data Consistency Check for a Node

" | oad the entire write pointer table into memory once at boot time

" Check each entry to see if it is less than the write pointer

* (address >= write pointer) = corrupted node

Node block

Block Map

Zone 0 | Zone |

WP WP
LBA 4 LBA 7

D

DDj D|ID|(D]E

Index |01]2
Block | |2 1|5

Check data consistency

for (i = 0;i < #index; i++) {
If (block_mapl[i] < write pointer)
continue; /* written, valid */
else
break; /* erased, invald */

32

Data Consistency Check for a Node

" | oad the entire write pointer table into memory once at boot time

" Check each entry to see if it is less than the write pointer

* (address >= write pointer) = corrupted node

WP WP
LBA O LBA 4 LBA 7

| ZoneO | Zone |

i for (i = 0;i < # index; i++) {

Node block I"" 5Ioinlo *“ DIDIDE If (block_mapl[i] < write pointer)
Block Map [|--

continue; /* written, valid */

. Nand /A/A else
\\ Invalid break.

"==q Index |01 |2
5

Block | | |2
Data loss occurs! = — _————————— >

/* erased, invald */

NjWwW
-

Check data consistency

33

Performance Improvement

* No need to enforce the write order during fsync()

* OPRW ensures data consistency during the recovery process

<F2FS> 1< [Syncf)-posix > Node
i(fsync()-nobarrier)E | Data
FOFS -IT, N] E Flush
SSOD — L DMA ——<1 DMA | FLUSH |
<OPRW> . fsync()-posix ,
. fsync()-nobarrier

|
1€ 3

F2Fs 1D N |
ssD — | DMA T DMA

[H

34

Evaluation Setup

= Platform
e |ntel Xeon Silver 4116 2.10GHz
e 5.14.4 Kernel

" Storage
* Western Digital ZN540 : Supporting Power-Loss Protection (PLP)
* NVMeVirt (FAST 23’) : Emulating ZN540 without PLP

= Workload
e FIO, Varmail, OLTP-Insert

35

Data Consistency Test

" Sequence
.

i

Fill the file with the specific pattern

Write the same pattern in the file

Inject a crash at a random time

Check to see if the pattern matches, after the file system is restored.

File A

0xDEAD
O0xDEAD
0xDEAD
O0xDEAD
O0xDEAD

crash!

File A

\4

OxDEAD
OxDEAD
0x0

0x0

TN

Data Mismatch = Fail

0xDEAD

<Result>

Failure Rate

F2FS-posix

3%

F2FS-strict

0%

OPRW-posix

0%

36

Performance of fsync() — Non-PLP Device

= OPRWY can ensure data consistency, without sacrificing performance

80

Throughput (MiB/s)
S (o))
o o

N
o

<FIO, random write + fsync>

B F2FS-posix
B F2FS-strict
B OPRW-posix

59.8 60.5

4KB 8KB 16KB 32KB 64KB

<Varmail>

6.92

4.1

6.97

Tx/s

<OLTP-Insert>

600

200

462

470

37

Recovery Time

* OPRW has a negligible impact on recovery time

<Roll-forward execution time>

A SR 40791 50962 57500
node
PR 4177 7307 9751
(ms)
QAPIA 4380 7584 10093
(ms)
Difference +203 +277 +342
(ms)

Throughput (MiB/s)

Performance of fsync() — PLP Device

" F2FS does not suffer from data consistency issues on PLP devices

= But OPRW can still provide performance gains

<FIO, random write + fsync> <Varmail> <OLTP-Insert>
800
W F2FS-nobarrier 120 o 8000 | | |
s00 | @ OPRW-nobarrier 540 100 | ° X 98) x6293
455 457 ” 823 6000 | >711
5 80 d
400) >
(@) —
S 60 4000
l.4x 40
200 137 156 5000
20
0 0 0

4KB 8KB 16KB 32KB 64KB

Conclusion

* Point out the data corruption problem in F2FS
= Observe that write pointers can be used to determine the validity of data

* Propose OPRW technique using the write pointer provided by ZNS
* Ensure data consistency with minimal overhead

* Improve fsync() performance by removing synchronization actions

40

Thanks! Any Questions!?

	슬라이드 1
	슬라이드 2: Overview
	슬라이드 3: F2FS Filesystem
	슬라이드 4: fsync() in F2FS
	슬라이드 5: fsync() in F2FS
	슬라이드 6: fsync() in F2FS
	슬라이드 7: fsync() in F2FS
	슬라이드 8: fsync() in F2FS
	슬라이드 9: fsync() in F2FS
	슬라이드 10: Roll-Forward in F2FS
	슬라이드 11: Roll-Forward in F2FS
	슬라이드 12: Roll-Forward in F2FS
	슬라이드 13: Roll-Forward in F2FS
	슬라이드 14: Data Corruption in F2FS (1/2)
	슬라이드 15: Data Corruption in F2FS (2/2)
	슬라이드 16: Data Corruption in F2FS (2/2)
	슬라이드 17: Data Corruption in F2FS (2/2)
	슬라이드 18: Data Corruption in F2FS (2/2)
	슬라이드 19: Data Corruption in F2FS (2/2)
	슬라이드 20: Naïve Solution - Pessimistic Approach
	슬라이드 21: Naïve Solution - Optimistic Approach
	슬라이드 22: Observation - Write Pointer of ZNS
	슬라이드 23: Order-Preserving Recovery by Write Pointer
	슬라이드 24: Order-Preserving Recovery by Write Pointer
	슬라이드 25: Order-Preserving Recovery by Write Pointer
	슬라이드 26: Order-Preserving Recovery by Write Pointer
	슬라이드 27: Order-Preserving Recovery by Write Pointer
	슬라이드 28: Data Consistency Check for a Node
	슬라이드 29: Data Consistency Check for a Node
	슬라이드 30: Data Consistency Check for a Node
	슬라이드 31: Data Consistency Check for a Node
	슬라이드 32: Data Consistency Check for a Node
	슬라이드 33: Data Consistency Check for a Node
	슬라이드 34: Performance Improvement
	슬라이드 35: Evaluation Setup
	슬라이드 36: Data Consistency Test
	슬라이드 37: Performance of fsync() – Non-PLP Device
	슬라이드 38: Recovery Time
	슬라이드 39: Performance of fsync() – PLP Device
	슬라이드 40: Conclusion
	슬라이드 41: Thanks! Any Questions?

