Excessive SSD-Internal Parallelism Considered Harmful

Xiangqun Zhang, Syracuse University
Shuyi Pei, Samsung Semiconductor USA
Jongmoo Choi, Dankook University
Bryan S. Kim, Syracuse University

SAMSUNG

Parallelism in SSD

- Multiple channels, multiple chips per channel
- Single blocks from all chips form superblocks for the sake of parallelism
 - Controller stripes incoming requests
 - Multiple chips serve the request in parallel
 - Each chip receives a part of the request
 - Superblock is the unit for garbage collection
- Higher level of SSD-internal parallelism provides better SSD performance
 - Or... does it?

Is Higher Parallelism Always Beneficial?

- Keep the same hardware configuration
- Reduce parallelism by using a portion of all available chips

Is Higher Parallelism Always Beneficial?

- WAF reduced using lower parallelism
- Throughput improved when reducing parallelism to some extent

Other Ways to Improve SSD Efficiency

- Reducing WAF and improving throughput by passing hints
 - Multi-stream*
 - AutoStream^{**}, PCStream[†], etc.

- Prior works are usually implemented on the host
 - Host side has more I/O information
 - SSD resource is limited
 - Multi-stream was supported by Linux

^{*:} HotStorage 14

^{*:} SYSTOR 17

^{†:} HotStorage 18, FAST 19

Parallelism- and Lifetime-aware Allocation (PLAN)

- Reduce write amplification by reducing superblock size & parallelism
- Place data based on data lifetime

Flexible Superblocks

- Sequential requests are more sensitive to SSD parallelism
- Random requests are not as sensitive to SSD parallelism

 Ensures better GC efficiency for small, random requests while keeping throughput for large, sequential requests

Lifetime Predictor

- PLAN keeps data lifetime information
 - Logical address space is split into chunks
- PLAN uses a decay factor to decide the weight of new/old lifetime information
- Choose target superblock based on predicted lifetime

S : Short Lifetime

M : Medium Lifetime

L : Long Lifetime

E: Extremely Long Lifetime

- SSD: 256GiB, FEMU-emulated
 - 8 channels, 8 chips/channel, 1024 blocks/chip, 256 pages/block, 16KiB page

- Benchmarks
 - FIO
 - TPC-C from BenchBase
 - YCSB workload A
 - Fileserver from Filebench
 - GCC Linux kernel compilation

FEMU Settings			
Channels	8	Page size	16 KiB
Chips per channel	8	Physical capacity	256 GiB
Planes per chip	1	Logical capacity	240 GiB
Blocks per plane	1024	Over-provisioning	0.0625
Pages per block	256	Garbage collection	Greedy

- Existing schemes
 - Baseline
 - Partial GC

Choose the block in any superblock with the most invalid data as the victim

- Existing schemes
 - Baseline
 - Partial GC
 - Multi-stream (HotStorage 14)

- Existing schemes
 - Baseline
 - Partial GC
 - Multi-stream (HotStorage 14)
 - AutoStream (SFR method, SYSTOR 17)

- Existing schemes
 - Baseline
 - Partial GC
 - Multi-stream (HotStorage 14)
 - AutoStream (SFR method, SYSTOR 17)
- PLAN
 - No lifetime prediction, 1/4 parallelism
 - No lifetime prediction, 1/8 parallelism
 - With lifetime prediction, 1/4 parallelism
 - With lifetime prediction, 1/8 parallelism

Two questions:

- 1. How does PLAN work without lifetime prediction?
- 2. How does PLAN work with different levels of parallelism?

Evaluation – FIO Performance

- PLAN improves throughput for FIO by up to 30%
 - I/O-bounded
 - iodepth = 32

Evaluation – FIO WAF

Evaluation – GCC Performance

- PLAN keeps throughput for GCC
 - CPU-bounded
 - CPU constantly at 100%

Evaluation – GCC WAF

Conclusion

- Higher parallelism does not always bring better performance
- PLAN provides better SSD-internal parallelism management
 - High parallelism for large, sequential requests
 - Low parallelism for small, random requests

Q&A

Thank you!

Contact me: xzhang84@syr.edu

https://zhxq.me/