
Energy Implications of IO Interface Design Choices
Sidharth Sundar, William Simpson, Jacob Higdon,
Caeden Whitaker, Bryan Harris, Nihat Altiparmak

Computer Systems Lab
Computer Science & Engineering Department

HotStorage ’23 (Boston), July 9, 2023

Outline

● Motivation
● IO Interface design choices
● Experimental Results

○ Latency Impact
○ Energy Efficiency

● Conclusion

2

HotStorage’23

ULTRA-LOW
Latency (ULL)
< 10µs

3

Trends in data storage

2000s 2010s 2020s 1980s 1990s

Greater CAPACITY

Magnetic media Flash media New technologies

Greater PERFORMANCE
with ever Lower Latency

More pressure on OS
Uses more CPU, RAM

More ENERGY E cient

Want high performance using low energy

More PARALLELISM ● Submit in parallel
● Device serves in parallel

HotStorage’23

IO Interfaces

4

Device

VFS

File system

Block

Device driver

user

kernel
➊

➌

➋

Application

➍

HotStorage’23

IO Interface Design Choices

5

HotStorage’23

posix-sio — Based on traditional POSIX synchronous read(2), pread(2), etc.

posix-aio — POSIX asynchronous, implemented in library on top of posix-sio.

libaio — Linux native asynchronous IO library

io_uring — Recent Linux design for high performance

spdk — Intel framework based on kernel bypass

Existing Linux APIs

6

HotStorage’23

➊ Execution in kernel or user space

7

API kernel user

posix-sio

Implemented in
kernel

posix-aio Implemented in C lib.
on top of posix-sio

libaio

io_uring

spdk Uses kernel bypass
drivers

HotStorage’23

➋ Synchronous or Asynchronous behavior

8

API Synchronous Asynchronous

posix-sio synch. only

posix-aio asynch. only

libaio asynch. only

io_uring both supported

spdk asynch. only

HotStorage’23

➌ Submission using system call or polling

9

user

kernel

IORING_SETUP_SQPOLL

kernel polls for SQ entries

(No need for system calls!)

system call

SQ CQ

Application + io_uringApplication

HotStorage’23

➌ Submission using system call or polling

10

API System call Submission polling

posix-sio

System call based

posix-aio

libaio

io_uring io_uring feature

spdk kernel bypass

HotStorage’23

➍ Completion using interrupt or polling

11

API Interrupt Poll

posix-sio

Interrupts

Optional polling

posix-aio

libaio

io_uring Optional polling

spdk Polling required

HotStorage’23

Interface design choices

12

HotStorage’23

Experimental Results

13

Experimental Setup

14

Power Measurement
Onset HOBO plug meter logs
power, current, etc., every
second, for the entire system.

Image from Onset Computer Corporation

Workloads
fio (“Flexible IO tester”)

– direct IO
● xfs file system
● “none” IO scheduler

https://www.onsetcomp.com/products/data-loggers/ux120-018/

HotStorage’23

Latency Impact

15

HotStorage’23

Latency Impact

16

HotStorage’23

Energy Impact

17

HotStorage’23

Energy efficiency metric

18

Energy efficiency =
Performance

=
IOPS

 = IO/J
Power Watts (J/s)

HotStorage’23

Energy Impact Experiments

19

● 4KB, 16KB, and 128KB requests
● 100% random read vs 100% random write
● Scaling # of overall requests issued in parallel to device using 2 metrics:

1. Single Thread
a. Scaling # of outstanding requests (iodepth) on single thread
b. Single thread issuing IOs
c. Only considers asynchronous interfaces

2. Multi-threaded
a. Scaling # of threads issuing IOs (# of jobs)
b. One request per thread

HotStorage’23

Energy Impact
Single Thread

20

HotStorage’23 21

Kernel bypassing is most energy efficient for single
thread small requests

4 KB Single Thread Random Reads

HotStorage’23 22

System call and interrupt based kernel space
implementations are most efficient for large requests

128 KB Single Thread Random Reads

HotStorage’23

Energy Impact
Multithreaded

23

HotStorage’23 24

For small requests, posix-sio with polling based
completion is most energy efficient

4 KB Multithreaded Random Writes

HotStorage’23 25

For large requests, posix-sio with interrupt based
completion is most energy efficient

128 KB Multithreaded Random Writes

HotStorage’23 26

128 KB Multithreaded Random Reads

Interrupts are crucial for energy efficiency
when the request size gets larger

HotStorage’23

Conclusion

➊ Kernel vs Userspace
Only bypass kernel if kernel functionalities (such as interrupts) are unnecessary

➋ Synchronous vs Asynchronous
Synchronous (posix-sio) tends to be more energy efficient when synchronous is usable

➌ System Call vs Submission Polling
Submission polling typically costs too much power to justify

➍ Interrupt vs Completion Polling
○ Polling is more energy efficient for smaller IOs
○ Interrupt is more energy efficient for larger IOs

27

HotStorage’23

Questions?

28

