Cache-Coherent Accelerators for
Persistent Memory Crash Consistency

Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann,

Gerd Zellweger, and Ryan Stutsman

THE UNIVERSITY
OF BRITISH COLUMBIA

THE
U UNIVERSITY
OF UTAH"® \

Persistent Memory is transformative

[m: Direct CPU load-store access

\/ Avoids costly syscalls and kernel storage stack

Application managed data structure persistence

([

Persistent Memory programming is hard

* Random application and machine crashes

e Reasoning about data consistency after a crash
* Example: Transfer money from one account to another account

* Most systems use WAL to recover consistency after crash

Persistent Memory programming is hard

* Random application and machine crashes

e Reasoning about data consistency after a crash
* Example: Transfer money from one account to another account

* Most systems use WAL to recover consistency after crash

CPU Cache

Application [1

Persistent Data
Structure

Persistent Memory programming is hard

* Random application and machine crashes

e Reasoning about data consistency after a crash
* Example: Transfer money from one account to another account

* Most systems use WAL to recover consistency after crash

CPU Cache

Application 15
15

Persistent Data
Structure

Persistent Memory programming is hard

* Random application and machine crashes

e Reasoning about data consistency after a crash
* Example: Transfer money from one account to another account

* Most systems use WAL to recover consistency after crash

CPU Cache /\
Application 15 A=10 A=10 Persistent Data
15 B=20 B =20 Structure
Undo Log in
PMem

Persistent Memory programming is hard

 Random application and machine crashes

e Reasoning about data consistency after a crash
* Example: Transfer money from one account to another account

* Most systems use WAL to recover consistency after crash

CPU Cache /\
Application 15 A=10
15 B=20

Undo Log in
PMem

Persistent Data
Structure

Related work

* Many schemes interpose on stores, cutting into PM benefits

* Most such schemes add WAL before the operations
* Write code from scratch using PMDK, etc.
* Use automated compiler-based approaches

* Some schemes use page-faults to track changes
e Page-faults are costly (> us for x86 hardware)
e Such schemes have high write-amplification (4KB page size)

Goal

* Transform volatile structures into crash-consistent persistent
structures, ex: Hash tables, trees, file system metadata structures, etc.

* No compiler or code changes

* Low write amplification

e Performance near to direct PM access by making the WAL and data
write async

Track the data structure changes using cache-coherence messages

Why now?

Possible without any CPU hardware changes

* Cache-coherent accelerators are becoming mainstream
* Enzian, Intel Harp, VMware PBerry, etc.

* Multiple ongoing standardizations for cc-Accelerators
* CAPI, CXL, etc.

* Low latency to access cache-coherent devices
* Near remote NUMA node access latencies

Example of PAX programming model

// Use the memory of the PAX device:

allocator = Snapshotter::map pool("pht")
// Instantiate a HashMap (can be regular DRAM DS):
pht = Persistent<HashMap>(&allocator);

// If CPU cache misses, fetches from device with CXL
pht.get(a, 100)

// Writes: CPU requests cache-line in modified state
// from PAX dev. (which now also logs the write)
pht.insert(b, 200);

// Group commit: write-back, flush undo-log to PMem
pht.persist()

Asynchronous logging and writeback

* libPAX/Application issues persist() after a batch of operations
* WAL entries are written to PM asynchronously
* Writeback is done to PM directly once WAL entries are persisted

* CPU cache is reused within a batch on operations

PAX overview

i il

| L1/L2 Cache | | L1/L2 Cache |
i i

CXL

olde) %8"[JSe]
7N

i i
| L1/L2 Cache | | L1/L2 Cache |

Host CPU

PAX Device

PM

PAX overview

libPAX

i il

| L1/L2 Cache | | L1/L2 Cache |
i i

SYIB) [9497T-1SE]

i i
| L1/L2 Cache | | L1/L2 Cache |

CXL

A
N

Host CPU

PAX Device

PM

PAX overview

libPAX

| L1/L2 Cache | | L1/L2 Cache |
i i

i i
| L1/L2 Cache | | L1/L2 Cache |

Host CPU

e

— |

SYIB) [9497T-1SE]

A

CXL

PAX Device

PM

PAX overview

Volatile data-structure

| L1/L2 Cache | | L1/L2 Cache |
i i

i i
| L1/L2 Cache | | L1/L2 Cache |

Host CPU

SYIB) [9497T-1SE]

CXL

PAX Device

PM

Example walkthrough — Read operation

I Hash Table : Get(a)

HBM Cache }

' /L 4,\[Write Back Coordinator }
\(_I/L Undo Logger }

— PM Undo Log
Host CPU vPM PAX Device PM

| L1/L2 Cache | | L1/L2 Cache |
i i

YDED [9AST-ISET]
O
><
—

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

Example walkthrough — Read operation

Hash Table Get(a)

| L1/L2 Cache | | L1/L2 Cache |
i i

1
i
1
i
YDED [9AST-ISET]
O
><
—
i
-
)
Q.
o
—
O
0]
aQ
g
=
—
0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

— PM Undo Log
Host CPU vPM PAX Device PM

Example walkthrough — Read operation

Hash Table
Get(a)
i i
- = = - [HBM Cache }
= JE Sl JE |- BusRd >
% =
ALLLL i ; /L Write Back Coordinator } ~
| L1/L2 Cache | | L1/L2Cache | |5 N
i TIT 4 CXL =
= = = = & { Undo Logger =
3 T
il i)
| L1/L2 Cache | | L1/L2 Cache |

— PM Undo Log
Host CPU vPM PAX Device PM

Example walkthrough — Read operation

Hash Table Get(a)

i T
{ ‘\%
BusRad
i i | |
[L/Lz Cache] [Li/L2 Cache | /L 4,\[Write Back Coordinator }
\lﬁ [Undo Logger }

SYIB) [9497T-1SE]

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

— PM Undo Log
Host CPU vPM PAX Device PM

Example walkthrough — Read operation

Hash Table Get(a)

I 1111
&%
@ @ BusRd

>
H 5
ALLLL i ; /L Write Back Coordinator ~
| L1/L2 Cache | | L1/L2Cache | |5 N
i TIT 4 CXL =
2 1E I 1E 8\ 2
= = = = ?Q—j Undo Logger =
= i
i i)
| L1/L2 Cache | | L1/L2 Cache |
—J PM Undo Log

Host CPU vPM PAX Device PM

Example walkthrough — Read operation

Hash Table Get(a)

I 1111
= &%
@ @ BusRd

>
H 5
ALLLL i ; /L Write Back Coordinator ~
| L1/L2 Cache | | L1/L2Cache | |5 N
i TIT 4 CXL =
2 1E I 1E 8\ 2
= = = = ?Q—j Undo Logger =
= i
i i)
| L1/L2 Cache | | L1/L2 Cache |
—J PM Undo Log

Host CPU vPM PAX Device PM

Example walkthrough — Write operation

I Hash Table : Put(a’-)

i il (] { HBM Cache }

/‘ ’\[Write Back Coordinator }
CXL /
\J { Undo Logger }

- PM Undo Log
Host CPU PAX Device PM

| L1/L2 Cache | | L1/L2 Cache |
i i

SYIB) [9497T-1SE]

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

Example walkthrough — Write operation

Hash Table

SYIB) [9497T-1SE]

| L1/L2 Cache | | L1/L2 Cache |
i i

i i
| L1/L2 Cache | | L1/L2 Cache |

Host CPU

Put(a,==)

{ HBM Cache }

A
N

>
S
’\[Write Back Coordinator } a
CXL 5%)
=
[Undo Logger } =
=1
)
PM Undo Log
PAX Device PM

Example walkthrough — Write operation

Hash Table

Put(a,==)

il
{ HBM Cache }

/‘ ’\[Write Back Coordinator }
CXL /
\J { Undo Logger }

- PM Undo Log
Host CPU PAX Device PM

| L1/L2 Cache | | L1/L2 Cache |
i i

SYIB) [9497T-1SE]

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

Example walkthrough — Write operation

I Hash Table : Put(a’-)

i i ()
- = = - { HBM Cache }
= = = = >
i LLLLL o /\ Write Back Coordinator ="
| L1/L2 Cache | | L1/L2Cache | |5 N
TIIL T =4 CXL D
= = = = ?Q—j Undo Logger =
= i
il i)
| L1/L2 Cache | | L1/L2 Cache | T
- PM Undo Log

Host CPU PAX Device PM

Example walkthrough — Write operation

I Hash Table : Put(a’-)

i i ()
- - :: { HBM Cache }
= = = = >
i LLLLL o /\ Write Back Coordinator ="
| L1/L2 Cache | | L1/L2Cache | |5 N
TIIL T =4 CXL D
= = = = ?Q—j Undo Logger =
= i
il i)
| L1/L2 Cache | | L1/L2 Cache | T
- PM Undo Log

Host CPU PAX Device PM

Example walkthrough — Writeback

I Hash Table : perSiSt()

i i ()
- = - — { HBM Cache }
S]
T i * . . 3
i B iipeas | e /‘ ’\[Write Back Coordinator } 5l
i TR CXL o
= = = = %:; Undo Logger =3
=t
I | S
| L1/L2 Cache | | L1/L2 Cache | T
- PM Undo Log

Host CPU PAX Device PM

Example walkthrough — Writeback

I Hash Table : perSiSt()

i i ()
- = = - { I HBM Cache }
= = = = >
i LLLLL o /\ Write Back Coordinator ="
| L1/L2 Cache | | L1/L2Cache | |5 N
TIIL T =4 CXL D
= = = = ?Q—j Undo Logger =
= i
il i)
| L1/L2 Cache | | L1/L2 Cache | T
- PM Undo Log

Host CPU PAX Device PM

Example walkthrough — Writeback

I Hash Table : perSiSt()

il il ()
I HBM Cache

/‘ ’\[Write Back Coordinator }
CXL /
\J { Undo Logger }

- PM Undo Log
Host CPU PAX Device PM

| L1/L2 Cache | | L1/L2 Cache |
i i

SYIB) [9497T-1SE]

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

Example walkthrough — Writeback

I Hash Table : perSiSt()

| L1/L2 Cache | | L1/L2 Cache |
i i

i i
| L1/L2 Cache | | L1/L2 Cache |

Host CPU

)

SYIB) [9497T-1SE]

{ HBM Cache }

’\[Write Back Coordinator }

A
N

CXL /
{ Undo Logger }

PM Undo Log
PAX Device

PM

1 - Joysdeug o101y

Software-Simulated CXL Accelerator

Hash Table

Shared-memory Software-based
Queues PAX device

il i
[L1/L2 Cache] [L1/L2 Cache]

[Last-Level Cache]
Host CPU

Cache-Coherent FPGA, Enzian

Hash Table

i T
= = = = { HBM Cache }
= = = = -
T T o _ | S
| L1/L2 Cache | | L1/L2Cache | | & /‘ e — !\[Write Back Coordinator } =
T T C<D< oheren 5
= = = = A Interconnect / B
= = = = ?‘);_ \J { Undo Logger } ‘ér
T T ® T
[L1/L2 Cache) [L1/L2 Cache) II R
;’ PM Undo Log

Host CPU FPGA-based PAX Device DRAM

Expected performance with ccFPGA

N B O
Q O O

DRAM PM PM viaPM via
CXL Enzian

AMAT [ns]
=

Expected performance with ccFPGA

-

N B O
o

AMAT [ns]
o

DRAM PM PM viaPM via
CXL Enzian

=

Expected performance with ccFPGA

-

N B O
o

AMAT [ns]
o

DRAM PM PM viaPM via
CXL Enzian

=

Expected performance with ccFPGA

e -o- PM Direct -4~ PMDK

Q.

s 15

s } Expected PAX Performance
2 10 L
O —a

e 9

O

s O

I 1 8 16 24 32
|_

Threads

PAX: Key takeaways

* Persistent Memory provides low-latency persistence
* However, persistent programming is complicated

* Most existing schemes do double synchronous PM writes and
sometimes increase the write-amplification

* The goal of our work is to provide low-latency, black-box persistent
for existing volatile structures using cc-Accelerators

