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Persistent Memory is transformative

[m: Direct CPU load-store access

\/ Avoids costly syscalls and kernel storage stack

Application managed data structure persistence

([



Persistent Memory programming is hard

* Random application and machine crashes

e Reasoning about data consistency after a crash
* Example: Transfer money from one account to another account

* Most systems use WAL to recover consistency after crash
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Related work

* Many schemes interpose on stores, cutting into PM benefits

* Most such schemes add WAL before the operations
* Write code from scratch using PMDK, etc.
* Use automated compiler-based approaches

* Some schemes use page-faults to track changes
e Page-faults are costly ( > us for x86 hardware)
e Such schemes have high write-amplification ( 4KB page size)



Goal

* Transform volatile structures into crash-consistent persistent
structures, ex: Hash tables, trees, file system metadata structures, etc.

* No compiler or code changes

* Low write amplification

e Performance near to direct PM access by making the WAL and data
write async

Track the data structure changes using cache-coherence messages



Why now?

Possible without any CPU hardware changes

* Cache-coherent accelerators are becoming mainstream
* Enzian, Intel Harp, VMware PBerry, etc.

* Multiple ongoing standardizations for cc-Accelerators
* CAPI, CXL, etc.

* Low latency to access cache-coherent devices
* Near remote NUMA node access latencies



Example of PAX programming model

// Use the memory of the PAX device:

allocator = Snapshotter::map pool("pht")
// Instantiate a HashMap (can be regular DRAM DS):
pht = Persistent<HashMap>(&allocator);

// If CPU cache misses, fetches from device with CXL
pht.get(a, 100)

// Writes: CPU requests cache-line in modified state
// from PAX dev. (which now also logs the write)
pht.insert(b, 200);

// Group commit: write-back, flush undo-log to PMem
pht.persist()



Asynchronous logging and writeback

* libPAX/Application issues persist() after a batch of operations
* WAL entries are written to PM asynchronously
* Writeback is done to PM directly once WAL entries are persisted

* CPU cache is reused within a batch on operations



PAX overview
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PAX overview

Volatile data-structure
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Example walkthrough — Read operation

I Hash Table : Get(a)

HBM Cache }

' /L 4,\[ Write Back Coordinator }
\( _I/L Undo Logger }

— PM Undo Log
Host CPU vPM PAX Device PM

| L1/L2 Cache | | L1/L2 Cache |
i i

YDED [9AST-ISET]
O
><
—

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |




Example walkthrough — Read operation

Hash Table Get(a)

| L1/L2 Cache | | L1/L2 Cache |
i i

1
i
1
i
YDED [9AST-ISET]
O
><
—
i
-
)
Q.
o
—
O
0]
aQ
g
=
—
0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

— PM Undo Log
Host CPU vPM PAX Device PM



Example walkthrough — Read operation

Hash Table
Get(a)
i i
- = = - [ HBM Cache }
= JE Sl JE |- BusRd >
% =
ALLLL i ; /L Write Back Coordinator } ~
| L1/L2 Cache | | L1/L2Cache | |5 N
i TIT 4 CXL =
= = = = & { Undo Logger =
3 T
il i )
| L1/L2 Cache | | L1/L2 Cache |

— PM Undo Log
Host CPU vPM PAX Device PM



Example walkthrough — Read operation

Hash Table Get(a)

i T
{ ‘\%
BusRad
i i | |
[ L/Lz Cache ] [ Li/L2 Cache | /L 4,\[ Write Back Coordinator }
\lﬁ [ Undo Logger }

SYIB) [9497T-1SE]

0 - Joysdeug J1w0ly

i i
| L1/L2 Cache | | L1/L2 Cache |

— PM Undo Log
Host CPU vPM PAX Device PM



Example walkthrough — Read operation

Hash Table Get(a)

I 1111
&%
@ @ BusRd

>
H 5
ALLLL i ; /L Write Back Coordinator ~
| L1/L2 Cache | | L1/L2Cache | |5 N
i TIT 4 CXL =
2 1E I 1E 8\ 2
= = = = ?Q—j Undo Logger =
= i
i i )
| L1/L2 Cache | | L1/L2 Cache |
—J PM Undo Log

Host CPU vPM PAX Device PM



Example walkthrough — Read operation

Hash Table Get(a)

I 1111
= &%
@ @ BusRd

>
H 5
ALLLL i ; /L Write Back Coordinator ~
| L1/L2 Cache | | L1/L2Cache | |5 N
i TIT 4 CXL =
2 1E I 1E 8\ 2
= = = = ?Q—j Undo Logger =
= i
i i )
| L1/L2 Cache | | L1/L2 Cache |
—J PM Undo Log

Host CPU vPM PAX Device PM



Example walkthrough — Write operation
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Example walkthrough — Writeback
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Software-Simulated CXL Accelerator

Hash Table

Shared-memory Software-based
Queues PAX device

il i
[ L1/L2 Cache ] [ L1/L2 Cache ]

[ Last-Level Cache ]
Host CPU




Cache-Coherent FPGA, Enzian
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Expected performance with ccFPGA
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Expected performance with ccFPGA
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PAX: Key takeaways

* Persistent Memory provides low-latency persistence
* However, persistent programming is complicated

* Most existing schemes do double synchronous PM writes and
sometimes increase the write-amplification

* The goal of our work is to provide low-latency, black-box persistent
for existing volatile structures using cc-Accelerators



