
Cache-Coherent Accelerators for
Persistent Memory Crash Consistency

Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann,

Gerd Zellweger, and Ryan Stutsman

Persistent Memory is transformative

Direct CPU load-store access

Avoids costly syscalls and kernel storage stack

Application managed data structure persistence

Persistent Memory programming is hard

• Random application and machine crashes
• Reasoning about data consistency after a crash
• Example: Transfer money from one account to another account

• Most systems use WAL to recover consistency after crash

Persistent Memory programming is hard

• Random application and machine crashes
• Reasoning about data consistency after a crash
• Example: Transfer money from one account to another account

• Most systems use WAL to recover consistency after crash

A = 10
B = 20

Application Persistent Data
Structure

CPU Cache

A = 10
B = 20

Persistent Memory programming is hard

• Random application and machine crashes
• Reasoning about data consistency after a crash
• Example: Transfer money from one account to another account

• Most systems use WAL to recover consistency after crash

A = 10
B = 20

Application Persistent Data
Structure

CPU Cache

A = 10
B = 20
A = 15
B = 15

Persistent Memory programming is hard

• Random application and machine crashes
• Reasoning about data consistency after a crash
• Example: Transfer money from one account to another account

• Most systems use WAL to recover consistency after crash

A = 10
B = 20

A = 10
B = 20

Application

Undo Log in
PMem

Persistent Data
Structure

CPU Cache

A = 10
B = 20
A = 15
B = 15

Persistent Memory programming is hard

• Random application and machine crashes
• Reasoning about data consistency after a crash
• Example: Transfer money from one account to another account

• Most systems use WAL to recover consistency after crash

A = 10
B = 20

A = 10
B = 20

Application

Undo Log in
PMem

Persistent Data
Structure

CPU Cache

A = 10
B = 20
A = 15
B = 15

A = 15
B = 15

Related work

• Many schemes interpose on stores, cutting into PM benefits
• Most such schemes add WAL before the operations
• Write code from scratch using PMDK, etc.

• Use automated compiler-based approaches

• Some schemes use page-faults to track changes
• Page-faults are costly (> µs for x86 hardware)

• Such schemes have high write-amplification (4KB page size)

Goal

• Transform volatile structures into crash-consistent persistent
structures, ex: Hash tables, trees, file system metadata structures, etc.
• No compiler or code changes
• Low write amplification
• Performance near to direct PM access by making the WAL and data

write async

Track the data structure changes using cache-coherence messages

Why now?

Possible without any CPU hardware changes

• Cache-coherent accelerators are becoming mainstream
• Enzian, Intel Harp, VMware PBerry, etc.

• Multiple ongoing standardizations for cc-Accelerators
• CAPI, CXL, etc.

• Low latency to access cache-coherent devices
• Near remote NUMA node access latencies

Example of PAX programming model

// Use the memory of the PAX device:
allocator = Snapshotter::map_pool("pht")
// Instantiate a HashMap (can be regular DRAM DS):
pht = Persistent<HashMap>(&allocator);

// If CPU cache misses, fetches from device with CXL
pht.get(a, 100)
// Writes: CPU requests cache-line in modified state
// from PAX dev. (which now also logs the write)
pht.insert(b, 200);

// Group commit: write-back, flush undo-log to PMem
pht.persist()

Asynchronous logging and writeback

• libPAX/Application issues persist() after a batch of operations
• WAL entries are written to PM asynchronously
• Writeback is done to PM directly once WAL entries are persisted
• CPU cache is reused within a batch on operations

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU PM

CXL

PAX overview

PAX	Device

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU PM

CXL

PAX overview

libPAX

PAX	Device

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM PM

CXL

PAX overview

libPAX

PAX	Device

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM PM

CXL

PAX overview

libPAX

Volatile data-structure

PAX	Device

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Read operation

libPAX

Hash Table Get(a)

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Read operation

libPAX

Hash Table Get(a)

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Read operation

libPAX

Hash Table Get(a)

BusRd

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Read operation

libPAX

Hash Table Get(a)

BusRd

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Read operation

libPAX

Hash Table Get(a)

BusRd

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU vPM

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Read operation

libPAX

Hash Table Get(a)

BusRd

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Write operation

libPAX

Hash Table Put(a,)

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Write operation

libPAX

Hash Table Put(a,)

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Write operation

libPAX

Hash Table Put(a,)

BusUpgr

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Write operation

libPAX

Hash Table Put(a,)

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

HBM	Cache

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Write operation

libPAX

Hash Table Put(a,)

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Writeback

libPAX

Hash Table persist()

HBM	Cache

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Writeback

libPAX

Hash Table persist()

HBM	Cache

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-0

CXL

Example walkthrough – Writeback

libPAX

Hash Table persist()

HBM	Cache

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

Write	Back	Coordinator

Undo	Logger

PAX	Device PM
PM	Undo	Log

Atom
ic	Snapshot	-1

CXL

Example walkthrough – Writeback

libPAX

Hash Table persist()

HBM	Cache

Shared-memory	
Queues

Last-Level	Cache
L1/L2	Cache L1/L2	Cache

Host	CPU

Software-Simulated CXL Accelerator

libPAX

Hash Table

Dynamic Binary Translation

Software-based
PAX device

Last-Level	Cache

L1/L2	Cache L1/L2	Cache

L1/L2	Cache L1/L2	Cache

Host	CPU

HBM	Cache

Write	Back	Coordinator

Undo	Logger

FPGA-based	PAX	Device DRAM
PM	Undo	Log

Atom
ic	Snapshot	-1

Coherent	
Interconnect

Cache-Coherent FPGA, Enzian

libPAX

Hash Table

Expected performance with ccFPGA

Expected performance with ccFPGA

2x

Expected performance with ccFPGA

2x

25%

Expected performance with ccFPGA

Expected PAX Performance

PAX: Key takeaways

• Persistent Memory provides low-latency persistence
• However, persistent programming is complicated
• Most existing schemes do double synchronous PM writes and

sometimes increase the write-amplification
• The goal of our work is to provide low-latency, black-box persistent

for existing volatile structures using cc-Accelerators

