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Persistent Memory is transformative

Direct CPU load-store access

Avoids costly syscalls and kernel storage stack

Application managed data structure persistence



Persistent Memory programming is hard

• Random application and machine crashes
• Reasoning about data consistency after a crash
• Example: Transfer money from one account to another account

• Most systems use WAL to recover consistency after crash
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Related work

• Many schemes interpose on stores, cutting into PM benefits
• Most such schemes add WAL before the operations
• Write code from scratch using PMDK, etc.

• Use automated compiler-based approaches

• Some schemes use page-faults to track changes
• Page-faults are costly ( > µs for x86 hardware)

• Such schemes have high write-amplification ( 4KB page size)



Goal

• Transform volatile structures into crash-consistent persistent 
structures, ex: Hash tables, trees, file system metadata structures, etc.
• No compiler or code changes
• Low write amplification
• Performance near to direct PM access by making the WAL and data 

write async

Track the data structure changes using cache-coherence messages



Why now?

Possible without any CPU hardware changes

• Cache-coherent accelerators are becoming mainstream
• Enzian, Intel Harp, VMware PBerry, etc.

• Multiple ongoing standardizations for cc-Accelerators
• CAPI, CXL, etc.

• Low latency to access cache-coherent devices
• Near remote NUMA node access latencies



Example of PAX programming model

// Use the memory of the PAX device:
allocator = Snapshotter::map_pool("pht")
// Instantiate a HashMap (can be regular DRAM DS):
pht = Persistent<HashMap>(&allocator);

// If CPU cache misses, fetches from device with CXL
pht.get(a, 100)
// Writes: CPU requests cache-line in modified state
// from PAX dev. (which now also logs the write)
pht.insert(b, 200);

// Group commit: write-back, flush undo-log to PMem
pht.persist()



Asynchronous logging and writeback

• libPAX/Application issues persist() after a batch of operations
• WAL entries are written to PM asynchronously
• Writeback is done to PM directly once WAL entries are persisted
• CPU cache is reused within a batch on operations
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PAX: Key takeaways

• Persistent Memory provides low-latency persistence
• However, persistent programming is complicated
• Most existing schemes do double synchronous PM writes and 

sometimes increase the write-amplification
• The goal of our work is to provide low-latency, black-box persistent 

for existing volatile structures using cc-Accelerators


