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Challenges when Developing
Scalable Applications

Concurrent systems are hard 
to reason about

[Van Renesse; 2015]

Hardware failures are 
common

Developers want better abstractions for elastic and scalable applications

Workloads might change 
unexpectedly



Serverless Programming So Far

Split application into multiple lambda functions deployed on a cloud 
service

Advantages: 

● Hides the underlying distributed system from the 
application developer

● Fully elastic: Resources are automatically allocated 
by the cloud provider

Limitations:

● High Latencies

● Weak Consistency Guarantees
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Towards a Better Trade-Off

Elasticity

La
te

nc
ie

s

Custom 
Implementations

Conventional
Serverless

LambdaObjects

Goal: Keep latencies low enough to be unnoticable for the end user, but maximize elasticity. 



Disaggregation in Serverless
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Re-Aggregation: Challenges

● Determine which data and computation belongs together

● Design a compute-enabled datastore

● Support mutually distrusting functions

● Adapt to workload changes

● Provide transactional guarantees



An Abstraction for Re-Aggregation

LambdaObjects bundle data and functions that logically belong together, similar to classes in 
object-oriented programming

Avoids expensive data transfers:

● All data of an object resides on the same machine (or replica set)
● Function invocations of an object execute at the machine holding its data

Enables strong consistency:

● No cache layers in place
● Easy to avoid scheduling functions modifying the same object



LambdaObjects: Application Example

● Fields represent, structured or unstructured, 
data associated with an object

● Functions access or modify the state of an 
object

● Objects can only directly modify their own data

object UserAccount

field Followers

field Timeline

function get_timeline

function follow

function create_post

Example: Social network functionality as LambdaObjects



Datastore Design for Re-Aggregation
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Shard 2

Shard n

Client

Shard 1
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one shard

● Clients directly contact the shard 
to execute functions

● All nodes are connected to a 
coordinating service that 
detects and manages failures



Preliminary Evaluation Setup
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Preliminary Evaluation Results

Workloads:

Note: Latencies are generally low due to the use WebAssembly and lack of wide-area 
communication 

● Follow: Adds an account as a 
follower to another account
(single function call; write-heavy)

● GetTimeline: Retrieves the 
timeline for a specific account
(single function call; read-only)

● Post: Creates one post and 
updates all affected timelines
(multiple function calls; read/write)



Re-Aggregation: Challenges Revisited

● Determine which data and computation belongs together

● Design a compute-enabled datastore

● Support mutually distrusting functions

● Adapt to workload changes

● Provide transactional guarantees



Conclusion

Co-location of storage and execution enables serverless applications with low latencies and 
strong consistency

LambdaObjects are a straightforward and efficient abstraction for developers to build such 
co-located systems

Limitations:

● Not all use cases might fit this design
● Might not be beneficial for compute-heavy workloads
● Potentially expensive to port existing applications
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