% LambdaObjects:

Re-aggregating Storage and
Execution for Cloud Computing

Kai Mast, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

0

Challenges when Developing
Scalable Applications

| =TT
— [= = T”'

<AIRE
& A

e T

<N (11118

H
<Ak
1]

[Van Renesse; 2015]

Concurrent systems are hard Hardware failures are Workloads might change
to reason about common unexpectedly

Developers want better abstractions for elastic and scalable applications

E-_—/
i

Serverless Programming So Far

Split application into multiple lambda functions deployed on a cloud

service

Advantages:

0 Hides the underlying distributed system from the
application developer

0 Fully elastic: Resources are automatically allocated
by the cloud provider

Limitations:

a High Latencies
a Weak Consistency Guarantees

Lambda Function

Container, VM,

or Runtime fQKV M

Physical Machine

= =] =]

gt: Towards a Better Trade-Off

;-y N

Conventional
Serverless

LambdaObjects

Latencies

Custom
Implementations

Elasticity

Goal: Keep latencies low enough to be unnoticable for the end user, but maximize elasticity.

Disaggregation in Serverless

A, Compute
Load Balancing = Node 1 Persistent
& Fault-Tolerance Storage

AR Compute
= Node?2

Compute
Frontend

Datastore

Client

. Stateful / Replicated Q Compute
= Node n
. Stateless

High latencies due to replication of work and lack of locality

s

—%= Re-Aggregation: Challenges

ﬁf/

Determine which data and computation belongs together
Design a compute-enabled datastore

Support mutually distrusting functions

Adapt to workload changes

Provide transactional guarantees

An Abstraction for Re-Aggregation

LambdaObjects bundle data and functions that logically belong together, similar to classes in
object-oriented programming
Avoids expensive data transfers:

e All data of an object resides on the same machine (or replica set)
e Function invocations of an object execute at the machine holding its data
Enables strong consistency:

e No cache layers in place
e Easy to avoid scheduling functions modifying the same object

o
i

ﬂoject UserAccount

field Followers

field Timeline

function get_timeline

function follow

function create post

/

Example: Social network functionality as LambdaObjects

= LambdaObjects: Application Example

Fields represent, structured or unstructured,
data associated with an object

Functions access or modify the state of an
object

Objects can only directly modify their own data

Each LambdaObiject is located at
one shard

Clients directly contact the shard
to execute functions

All nodes are connected to a
coordinating service that
detects and manages failures

Client

. Stateful / Replicated

. Stateless

Shard n

= Preliminary Evaluation Setup

Storage Storage Storage Storage
Replica Replica Replica Replica
Node Node Node Node
il | \ /
I ———————
A-Function I : l
| unct I I A-Function |
= «—]! | T [1I | [¢—| Primary
QP = = = = = = = = = QL > —_—
= 5 I I Storage
O LevelDB | & — — J Node
Thread Pool Thread Pool

Primary Storage Node Compute Node

Re-Aggregated Disaggregated

Preliminary Evaluation Results

Workloads:
- — Aggfegated e Post: Creates one post and
W Disaggregated updates all affected timelines
30 (multiple function calls; read/write)
@ 23 o :
< e GetTimeline: Retrieves the
E 20 timeline for a specific account
< 15 (single function call; read-only)
®
-1 10 e Follow: Adds an account as a
5 follower to another account
0 (single function call; write-heavy)
Post GetTimeline Follow
Workload

Note: Latencies are generally low due to the use WebAssembly and lack of wide-area
communication

Re-Aggregation: Challenges Revisited

a Determine which data and computation belongs together

0 Design a compute-enabled datastore
0 Support mutually distrusting functions
0 Adapt to workload changes

0 Provide transactional guarantees

Conclusion

Co-location of storage and execution enables serverless applications with low latencies and
strong consistency

LambdaObjects are a straightforward and efficient abstraction for developers to build such
co-located systems

Limitations:

e Not all use cases might fit this design
e Might not be beneficial for compute-heavy workloads
e Potentially expensive to port existing applications

.| kaimast@cs.wisc.edu y @cskama

