
LambdaObjects:
Re-aggregating Storage and 

Execution for Cloud Computing
Kai Mast, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin-Madison

λ



Challenges when Developing
Scalable Applications

Concurrent systems are hard 
to reason about

[Van Renesse; 2015]

Hardware failures are 
common

Developers want better abstractions for elastic and scalable applications

Workloads might change 
unexpectedly



Serverless Programming So Far

Split application into multiple lambda functions deployed on a cloud 
service

Advantages: 

● Hides the underlying distributed system from the 
application developer

● Fully elastic: Resources are automatically allocated 
by the cloud provider

Limitations:

● High Latencies

● Weak Consistency Guarantees
Physical Machine

Container, VM,
or Runtime

Lambda Function



Towards a Better Trade-Off

Elasticity

La
te

nc
ie

s

Custom 
Implementations

Conventional
Serverless

LambdaObjects

Goal: Keep latencies low enough to be unnoticable for the end user, but maximize elasticity. 



Disaggregation in Serverless

Stateful / Replicated

Stateless

High latencies due to replication of work and lack of locality

Compute
Node 1

Compute
Node 2

Compute
Node n

Compute 
FrontendClient

Load Balancing
& Fault-Tolerance

Datastore

Persistent 
Storage



Re-Aggregation: Challenges

● Determine which data and computation belongs together

● Design a compute-enabled datastore

● Support mutually distrusting functions

● Adapt to workload changes

● Provide transactional guarantees



An Abstraction for Re-Aggregation

LambdaObjects bundle data and functions that logically belong together, similar to classes in 
object-oriented programming

Avoids expensive data transfers:

● All data of an object resides on the same machine (or replica set)
● Function invocations of an object execute at the machine holding its data

Enables strong consistency:

● No cache layers in place
● Easy to avoid scheduling functions modifying the same object



LambdaObjects: Application Example

● Fields represent, structured or unstructured, 
data associated with an object

● Functions access or modify the state of an 
object

● Objects can only directly modify their own data

object UserAccount

field Followers

field Timeline

function get_timeline

function follow

function create_post

Example: Social network functionality as LambdaObjects



Datastore Design for Re-Aggregation

Stateful / Replicated

Stateless

Shard 2

Shard n

Client

Shard 1
Coordinator● Each LambdaObject is located at 

one shard

● Clients directly contact the shard 
to execute functions

● All nodes are connected to a 
coordinating service that 
detects and manages failures



Preliminary Evaluation Setup

Primary Storage Node

WebAssembly Runtime

λ-Function

Thread Pool

LevelDB

Storage 
Replica 
Node

Compute Node

WebAssembly
Runtime

Storage 
Replica 
Node

Storage 
Replica 
Node

Primary 
Storage 
NodeC

lie
nt

Re-Aggregated Disaggregated

C
lie

nt
Thread Pool

λ-Function

Storage 
Replica 
Node



Preliminary Evaluation Results

Workloads:

Note: Latencies are generally low due to the use WebAssembly and lack of wide-area 
communication 

● Follow: Adds an account as a 
follower to another account
(single function call; write-heavy)

● GetTimeline: Retrieves the 
timeline for a specific account
(single function call; read-only)

● Post: Creates one post and 
updates all affected timelines
(multiple function calls; read/write)



Re-Aggregation: Challenges Revisited

● Determine which data and computation belongs together

● Design a compute-enabled datastore

● Support mutually distrusting functions

● Adapt to workload changes

● Provide transactional guarantees



Conclusion

Co-location of storage and execution enables serverless applications with low latencies and 
strong consistency

LambdaObjects are a straightforward and efficient abstraction for developers to build such 
co-located systems

Limitations:

● Not all use cases might fit this design
● Might not be beneficial for compute-heavy workloads
● Potentially expensive to port existing applications

@cskamakaimast@cs.wisc.edu


