
Lifetime-Leveling LSM-tree
Compaction for ZNS SSD

Jeeyoon Jung, Dongkun Shin

Sungkunkwan University, Korea

Zoned Namespace (ZNS)

• The logical address space is divided into fixed-size zones.

• Each zone must be written sequentially and reset explicitly for reuse

• No SSD-side garbage collection

Zone Size

Write Pointer
Written blocks Remaining blocks

sequential write

Zone 0 Zone 1 Zone 2 Zone 3 Zone N. . .

Storage LBA range

ZNS SSD

HM-SMR HDD

Host-managed GC on ZNS

Zone 1

Zone 2

Zone 3

Zone N

victim zone

explicitly reset

. . . valid data copy

LSM-tree SST at ZNS

Large SST

Zone0 Zone1 Zone2 Zone3

Large Zone

SST0 SST1 SST2 SST3

• Large Compaction Cost

• High memory pressure

• Small Compaction Cost

• Low memory Size

• Space Amplification

→ Host-managed GC
Target of this paper

Level Separation

Memory

Storage L0

L1

L2

...

: Deleted SST

Different lifetime of level

→ Space Amplification

Zone 0 Zone 1 Zone 2 Zone 3

. . .

Can’t Reset!!

Level Separation (GearDB)

Memory

Storage L0

L1

L2

...

: Deleted SST

Zone 0 Zone 1 Zone 2 Zone 3

. . .

Reset!!

Space Amplification

Current LevelDB Compaction Algorithm

Even with level separation

1

Key range

2 3 4 5 6Li

Li+1

Compaction Pointer

Pick SST with Round-Robin policy

(Managed by compaction pointer)

100%

Real Workload

Size
Additional

used zones

31%

ZNS still suffers from SA… why?

Delete Pointer

Write Pointer

Li+1

Li+1

Zone 0

Zone 1

1 2 3

SST

3

SST

4

SST

1

SST

6

SST

2

SST

7

Long-lived SST

SST

5

SST

8

SST

9

SST

10

SST

11

SST

12

SST

13

Li

Li+1

543 6

Zone10Zone9

721

13

Zone12Zone11

98 10 11 12

Additional 2% zones are allocated by Long-lived SST

21 43 6 7

Long-lived SST

Invalid SSTLive SST

Key range

SST

4
SST

3

Short-lived SST

Additional 30% zones are allocated by Short-lived SST

Li
SST

1

SST

2

Key range

SST

6

SST

7
Li+1

SST

5

SST

8

SST

10

SST

9

SST

11

54321

1176 8 9 10

21 543

8

Zone10Zone9

Zone12Zone11

Short-lived SST

Invalid SSTLive SST

SST

6

SST

2

SST

7

SST

3

SST

4

SST

5

SST

1

Solution for Long-Lived SST

Key range

SST

8

SST

9

SST

10

SST

12

SST

13

SST

14Li+1

543 6 721

1398 10 11 12

Compaction involves all Li+1 SSTs between the current CPi and the Next CPi

SST

11 14

CPi

21 543 6 7

Next CPi

Invalid SSTLive SST

Zone10Zone9

Zone12Zone11

Li

1 76

SST

6

SST

7

Solution for Short-Lived SST

Short-lived SST is written in T-Zone to prevent hole in normal Zone

SST

11

SST

8

SST

9
SST

10Li+1

SST

5

Next CPi

T-Zone11

98 10

CPi

Short-lived SST → T-Zone

Split SST at Next CPi to minimize the size of short-lived SST

21 543 76

Invalid SSTLive SST

Short-lived SST

Zone9 Zone10

Zone11

Zone12

Li
SST

1

SST

2

SST

10

Key range

SST

11

SST

5

CP-Aware Split Algorithm

SST

12

SST

8

SST

9

SST

10

SST

13
Li+1

CPi

CPi+1

SST

14
T-Zone1198 10 12 13 14

5

Split SST at CPi +1 to preserve compaction pointer

11

21 543 762

Invalid SSTLive SST

Short-lived SST

Zone10Zone9

Zone12Zone11

Li
SST

2

SST

12

Key range

Evaluation Setup

• Comparisons

➢BL : Baseline (use Infinite zone)

➢GC : LevelDB + GC

➢LS : LevelDB + Level Separation + GC

➢Gear : GearDB

• Test environment

Linux 64-bit Linux 5.11.1

CPU 4GHz quad-core Intel i7-4790K CPU

Memory 16GB DDR4 , use 1.5GB user-level cache

ZNS In-house ZNS SSD based on Cosmos+ OpenSSD

Defaults LevelDB 1.19, key=16B, value=512B, SST size=4MB, GC=greedy,

Zone=64MB

Cosmos+ OpenSSD

Performance & Zone utilization

0

1

2

3

4

5

6

7

8

BL GC LS Gear LL

P
er

fo
rm

an
ce

 (
M

B
/s

)

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601
Z

o
n

e
U

ti
li

za
ti

o
n

 (
%

)
Zone

BL

GC

LS

Gear

LL

• BL and GC show trade off relationship between WA and SA

• LS has 1.3X better performance vs GC due to lower GC cost

• Gear has lower performance vs LS due to high-cost gear compaction

• LL-Compaction has 1.4X better performance vs LS, 1.8X better performance vs Gear

Write breakdown

• GC cost (LS, GC) makes write amplification

• Gear compaction needs more write than normal compaction

• LL-Compaction achieves less write cost vs BL → benefit by split policy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BL GC LS Gear LL

W
ri

te
 B

re
ak

d
o

w
n

 (
T

B
)

L0 Write Compaction GC

Incremental throughput

• BL & LL compaction achieve stable and fast performance

• Performance of GC & LS drops when GC occurred (55min GC, 75min LS)

• Performance of Gear compaction is not stable; compaction cost of Gear

compaction is higher than normal compaction

0

5

10

15

20

25

30

35

40

45

1 31 61 91 121 151

O
P

S

time (min)

BL GC LS Gear LL

Performance (Real workload)

• GearDB can’t performs because GearDB needs more storage capacity

• LL-Compaction

• 1.2~1.7X vs GC

• 1.18~1.5X vs LS

0

0.5

1

1.5

2

Load A B C D E F

R
el

at
iv

e
P

er
fo

rm
an

ce

Benchmarks

GC LS LL

Conclusion & Discussion

• Current ZNS-unaware compaction can suffer from space amplification

• LL-Compaction

➢Reduce space amplification without invoking host-managed garbage collection

➢1.2~1.7X speed up for real workloads vs GC

• Limitation of LL-Compaction

➢ Cannot use priority-driven compaction algorithms (e.g., RocksDB)

➢ex) Overlapping-key range (reduce compaction cost), age (reduce read cost)

➢ We will analyze the impact of priority-driven compaction algorithms on GC

Thank You

Further Questions? wjdwldbs1@skku.edu

mailto:wjdwldbs1@skku.edu

