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* The logical address space is divided into fixed-size zones.
* Each zone must be written sequentially and reset explicitly for reuse

* No SSD-side garbage collection
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Host-managed GC on ZNS
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LSM-tree SST at ZNS
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Current LevelDB Compaction Algorithm
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Long-lived SST
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Additional 2% zones are allocated by Long-lived SST
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Additional 30% zones are allocated by Short-lived SST
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Solution for Long-Lived SST
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Compaction involves all L,; SSTs between the current CP; and the Next CP;
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o L Solution for Short-Lived SST

©2 Short-lived SST
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Split SST at Next CP; to minimize the size of short-lived SST
Short-lived SST is written in T-Zone to prevent hole in normal Zone
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7 Short-lived SST
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Split SST at CP, ., to preserve compaction pointer
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* Comparisons

»BL : Baseline (use Infinite zone)
»GC : LevelDB + GC

»>LS : LevelDB + Level Separation + GC

» Gear : GearDB

* Test environment

Cosmos+ OpenSSD

Linux 64-bit Linux 5.11.1

CPU 4GHz quad-core Intel i7-4790K CPU

Memory 16GB DDR4 , use 1.5GB user-level cache

ZNS In-house ZNS SSD based on Cosmos+ OpenSSD

Defaults LevelDB 1.19, key=16B, value=512B, SST size=4MB, GC=greedy,
Zone=64MB
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- Performance & Zone utilization

BL and GC show trade off relationship between WA and SA
LS has 1.3X better performance vs GC due to lower GC cost
Gear has lower performance vs LS due to high-cost gear compaction

LL-Compaction has 1.4X better performance vs LS, 1.8X better performance vs Gear
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) WVrite breakdown

* GC cost (LS, GC) makes write amplification
* Gear compaction needs more write than normal compaction

* LL-Compaction achieves less write cost vs BL = benefit by split policy
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e M Incremental throughput

* BL & LL compaction achieve stable and fast performance
* Performance of GC & LS drops when GC occurred (55min GC, 75min LS)

* Performance of Gear compaction is not stable; compaction cost of Gear

compaction is higher than normal compaction
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2 Performance (Real workload)

* GearDB can’t performs because GearDB needs more storage capacity

* LL-Compaction
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o Conclusion & Discussion

* Current ZNS-unaware compaction can suffer from space amplification

* LL-Compaction

» Reduce space amplification without invoking host-managed garbage collection

» 1.2~1.7X speed up for real workloads vs GC

* Limitation of LL-Compaction
» Cannot use priority-driven compaction algorithms (e.g., RocksDB)
» ex) Overlapping-key range (reduce compaction cost), age (reduce read cost)

» We will analyze the impact of priority-driven compaction algorithms on GC



Thank You

Further Questions? wjdwldbs1@skku.edu
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