Lifetime-Leveling LSM-tree
Compaction for ZNS SSD

Jeeyoon Jung, Dongkun Shin

Sungkunkwan University, Korea

IIIIII

WHotStorage
0 20229”“;15; ZO ne d N amnmes P ace (Z N S)

* The logical address space is divided into fixed-size zones.
* Each zone must be written sequentially and reset explicitly for reuse

* No SSD-side garbage collection

Storage LBA range

Zone O | Zone1 | Zone2 | Zone3 | 4 o o | ZoneN S

Host-Managed SMR HDD
Data in zones of
overlapped tracks

Zone Size T HM-SMR HDD

' »
<]

E— SAMSUNG

ZNS SSD ZNS SSD

S

i
[»lda »'
I L Bl -

Written blocks Remaining blocks
Write Pointer

zzzzzzzzz

Host-managed GC on ZNS

explicitly reset

victim zone

valid data cop)/

Zone 1

Zone 2

Zone 3

Zone N

zzzzzzzzz

LSM-tree SST at ZNS

Large SST

Zone0

Zone1 Zone?2 Zone3

* High

* Large Compaction Cost

T

memory pressure @

Target of this paper »

Large Zone

SSTO SST1 SST2

SST3

* Small Compaction Cost

* Low memory Size

* Space Amplification
= Host-managed GC

1 ®/| @ /

Can’t Reset!! 5 Different lifetime of level
v v —> Space Amplification
Zone 0 Zone 1 Zone 2 Zone 3

zzzzzzzzz

Memory
Storage : :) : Deleted SST
Reset!!
* V'
Zone O Zone 1 Zone 2 Zone 3

S

Current LevelDB Compaction Algorithm

Key range

P

2 Space Amplification

<

Compaction Pointer

Li

v

Li+1

Pick SST with Round-Robin policy
(Managed by compaction pointer)

Delete Pointer

\

Li+1

Zone 0
Write Pointer
Li+1

Zone 1

Even with level separation

100% 31%

Real Workload Additional
Size used zones

ZN S still suffers from SA... why?

&S

zzzzzzzzz

Long-lived SST

-

Live SST {_JlInvalid SST
Key range Long-lived SST
< " ————— N === ;—-—‘ﬁ]] *
SST ! : SST & \’// \\\ //’\\\\ //’\\\\ //’\\\\ £ ’5\\\
\ i] | |]]
I—i I 1 ‘I : 2 \ ‘\\EI:/ ,/‘_2”/ "\:’?/ y '\\\4_./ y 5 (\\\6__, 3 l\ \7=/ y
' 1 I
K \ I Y Zone9 Zonel0
/ \\ I \
[. l']
l SST SST5SST4y SST |SST>3SSTISST
Zonell Zonel?

Additional 2% zones are allocated by Long-lived SST

HotStor g
Short-li
mesone O r't_ |ve

Pid

Live SST { Jlnvalid SST
Key range
/ — — \ lv = p— \ /‘-‘\\ ///~\\\ PO NI N
L_ | SST I SST \ / \"/ \' / \",\/ \",\, \"
| | 1 |\ II 2 \ \\\\1///\\\%//1 1 \?/// \\\=/// 1 \E///
:' ,‘\ : Zone9 Zonelo
/ / S \
’ ’ N \ Short-lived SST
: ' S !
L | SST f ssT ssT |
i+1 1 L 9 10'\ 11 | 9 10 11
Zonell Zonel?

Additional 30% zones are allocated by Short-lived SST

S

zzzzzzzzz

Key range
"~ CP, Next CP,

’-—_—\ l"a \
1 SST \ | SS |
2 !

Vv

I

~
I N
I \
I

|
[
I
/ \ I \
I
I
\l
|LSST SST3 SST | SST ‘:SST;'SSTESS;I'J
i+1

8 9 10 11 | 12, 13 14

— e — —
_— o

Solution for Long-Lived SST

Live SST { Jlnvalid SST
1% 2} (3 ais{e6(7
Zone9 Zonell
8 9 10 11 12 13 14
Zonell Zonel?2

Compaction involves all L,; SSTs between the current CP; and the Next CP;

S

WHotStorage . .
o L Solution for Short-Lived SST

©2 Short-lived SST

Key range Live SST (: :} Invalid SST
"~ CP, Next CP, .

1) 2 k3145 (647
Zone9 Zonell
Zonell

7 i

7 Short-lived SST = T-Zone
Zonel2

Split SST at Next CP; to minimize the size of short-lived SST
Short-lived SST is written in T-Zone to prevent hole in normal Zone

S

I—i+l

7 Short-lived SST
Live SST {_Jlnvalid SST

Key range
It — O = —
| I’ \\ G ! a Y \Y, -~ \\l’—-\\l .
1 ! (13 2) (3¥4YsY6)7
! 2 | S N AN AN
L I
. , Zone9 Zonell
! \
I |+1 \
|
---I 000
14 7
Zonell Zonel2

Split SST at CP, ., to preserve compaction pointer

S

JJJJJJJJJ

* Comparisons

»BL : Baseline (use Infinite zone)
»GC : LevelDB + GC

»>LS : LevelDB + Level Separation + GC

» Gear : GearDB

* Test environment

Cosmos+ OpenSSD

Linux 64-bit Linux 5.11.1

CPU 4GHz quad-core Intel i7-4790K CPU

Memory 16GB DDR4 , use 1.5GB user-level cache

ZNS In-house ZNS SSD based on Cosmos+ OpenSSD

Defaults LevelDB 1.19, key=16B, value=512B, SST size=4MB, GC=greedy,
Zone=64MB

S

SUNG KYUN KWAN
UNIVERSITY(SKKU)

- Performance & Zone utilization

BL and GC show trade off relationship between WA and SA
LS has 1.3X better performance vs GC due to lower GC cost
Gear has lower performance vs LS due to high-cost gear compaction

LL-Compaction has 1.4X better performance vs LS, 1.8X better performance vs Gear

8 100
90
.
O 80
a S 7
= 5 = 68
o (@]
[¢B} —
e 4 &g 50
(4] N
€3 = 40
S D 30
$° 2 20
1 N 10
O O T T T T T T
BL GC LS Gear LL 1 101 201 301 401 501 601

SUNG KYUN KWAN
Zone 6 UNIVERSITY(SKKU)

) WVrite breakdown

* GC cost (LS, GC) makes write amplification
* Gear compaction needs more write than normal compaction

* LL-Compaction achieves less write cost vs BL = benefit by split policy

1.4

m L0 Write = Compaction =GC

1

BL GC LS Gear LL 6SUNGKYUNKWAN

=) UNIVERSITY(SKKU)

=
PN

o o o
A O o©

Write Breakdown (TB)

o
N

o

e M Incremental throughput

* BL & LL compaction achieve stable and fast performance
* Performance of GC & LS drops when GC occurred (55min GC, 75min LS)

* Performance of Gear compaction is not stable; compaction cost of Gear

compaction is higher than normal compaction

45
40
35
30
2 o
© 15
10
5
O | | | |
1 31 01 01 121 151

time (min) 6

—BL —GC LS Gear —LL

ALY 4

ALY, 4
TN PRSP PN~ -
!

2 Performance (Real workload)

* GearDB can’t performs because GearDB needs more storage capacity

* LL-Compaction

N

e 1.2~1.7X vs GC mGC mLS mLL

=
ol

* 1.18~1.5X vs LS

o
Ul

Relative Performance
H

o

Load A B C D E F
Benchmarks

SUNG KYUN KWAN
=) UNIVERSITY(SKKU)

o Conclusion & Discussion

* Current ZNS-unaware compaction can suffer from space amplification

* LL-Compaction

» Reduce space amplification without invoking host-managed garbage collection

» 1.2~1.7X speed up for real workloads vs GC

* Limitation of LL-Compaction
» Cannot use priority-driven compaction algorithms (e.g., RocksDB)
» ex) Overlapping-key range (reduce compaction cost), age (reduce read cost)

» We will analyze the impact of priority-driven compaction algorithms on GC

Thank You

Further Questions? wjdwldbs1@skku.edu

mailto:wjdwldbs1@skku.edu

