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Zoned Namespace (ZNS)

• The logical address space is divided into fixed-size zones.

• Each zone must be written sequentially and reset explicitly for reuse

• No SSD-side garbage collection
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Host-managed GC on ZNS
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LSM-tree SST at ZNS

Large SST
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• Large Compaction Cost

• High memory pressure

• Small Compaction Cost

• Low memory Size

• Space Amplification

→ Host-managed GC
Target of this paper



Level Separation
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Level Separation (GearDB)

Memory

Storage L0

L1

L2

...

: Deleted SST

Zone 0 Zone 1 Zone 2 Zone 3

. . . 

Reset!!



Space Amplification 

Current LevelDB Compaction Algorithm

Even with level separation
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Solution for Short-Lived SST

Short-lived SST is written in T-Zone to prevent hole in normal Zone
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Evaluation Setup

• Comparisons

➢BL : Baseline (use Infinite zone)

➢GC : LevelDB + GC

➢LS : LevelDB + Level Separation + GC

➢Gear : GearDB

• Test environment

Linux 64-bit Linux 5.11.1

CPU 4GHz quad-core Intel i7-4790K CPU

Memory 16GB DDR4 , use 1.5GB user-level cache

ZNS In-house ZNS SSD based on Cosmos+ OpenSSD

Defaults LevelDB 1.19, key=16B, value=512B, SST size=4MB, GC=greedy, 

Zone=64MB

Cosmos+ OpenSSD



Performance & Zone utilization
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• BL and GC show trade off relationship between WA and SA

• LS has 1.3X better performance vs GC due to lower GC cost

• Gear has lower performance vs LS due to high-cost gear compaction

• LL-Compaction has 1.4X better performance vs LS, 1.8X better performance vs Gear



Write breakdown

• GC cost (LS, GC) makes write amplification

• Gear compaction needs more write than normal compaction

• LL-Compaction achieves less write cost vs BL → benefit by split policy  
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Incremental throughput

• BL & LL compaction achieve stable and fast performance

• Performance of GC & LS drops when GC occurred (55min GC, 75min LS)

• Performance of Gear compaction is not stable; compaction cost of Gear 

compaction is higher than normal compaction

0

5

10

15

20

25

30

35

40

45

1 31 61 91 121 151

O
P

S

time (min)

BL GC LS Gear LL



Performance (Real workload)

• GearDB can’t performs because GearDB needs more storage capacity

• LL-Compaction 

• 1.2~1.7X vs GC

• 1.18~1.5X vs LS 
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Conclusion & Discussion

• Current ZNS-unaware compaction can suffer from space amplification

• LL-Compaction

➢Reduce space amplification without invoking host-managed garbage collection

➢1.2~1.7X speed up for real workloads vs GC

• Limitation of LL-Compaction 

➢ Cannot use priority-driven compaction algorithms (e.g., RocksDB)

➢ex) Overlapping-key range (reduce compaction cost), age (reduce read cost)

➢ We will analyze the impact of priority-driven compaction algorithms on GC  
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