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Ransomware is Becoming a Major Cyber Threat

• Potential high financial payoff made ransomware one of the most serious 
threats in cyber security.

• Recent ransomware attack cases:
§ Colonial Pipeline paid $4.4 million for the ransom (2021)
§ CNA Financial paid $4 million for the ransom (2021)
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Existing Anti-ransomware Solutions

• Detection-centric techniques (e.g., anti-virus software)

• Recovery-centric techniques
§ Host-level data recovery (e.g., cloud backup)
§ SSD-level data recovery (e.g., FlashGuard (CCS’17), SSD-Insider (ICDCS’18))

• Permission-centric techniques (e.g., whitelisting solutions)
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Limitations of Existing Anti-ransomware Solutions

• Detection-centric techniques:
§ Cannot prevent unknown ransomware behavior/signatures.

• Recovery-centric techniques
§ Backup operations incur excessive I/Os. 
§ Performance degradation due to many backup pages.
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Limitations of Existing Anti-ransomware Solutions (cont’d)

• Permission-Centric Techniques
§ Most solutions grant permissions at the application granularity.
§ Cannot prevent if ransomware is injected into a pre-approved (whitelisted) program. 

Protected Folder
Whitelisted Applications

Application whitelisting-based file access control
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Our Work: Whitelisting based on I/O Activity

• An I/O activity represents a particular I/O execution semantic context, an 
execution path of a program up to an I/O system call.

• Alohomora: whitelisting granularity is based on I/O activity.

Alohomora SSD

Whitelisted I/O Activities
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The Concept of I/O Whitelisting
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Outline

• Design of Alohomora

• Experimental Results
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I/O Activity Identification Using Program Contexts (PrCs)

• I/O activity is represented using a PrC (Program Context) value.
§ A PrC value is specific to the execution path.
§ A PrC value is computed by summing program counter (PC) values of function 

calls along the execution path up to a write-related system call.
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How to Extract PrC?

• A frame pointer-based SW method
§ The execution call addresses are acquired by backtracking 

stack frames using a frame-pointer.
§ Difficult to use in practice because many modern C/C++ 

compilers omit frame pointers.

epc

return	address	(12):
&[call	main()]+	4
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HW-based Automatic PrC Calculation

• Alohomora computes PrC value fully by hardware with an extension of a 
privileged register prc.

Extended RISC-V CPU with PrC Support
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𝒔𝒕𝒂𝒕𝒖𝒔 𝒆𝒑𝒄 prc

• A prc register is added to the Control 
& Status register.

• Upon Call / Ret instruction, the call 
address is added/subtracted.

A hardware-based PrC Calculation method
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Overview of Alohomora

• Alohomora requires modifications in:
§ a host CPU
§ a host OS
§ an SSD

• Maintains the PrC value 
of a written page.

• PrC value is saved and 
restored on a context 
switch.

write() from app with PrC value 27

27100
map PrC

query PrC

• Checks if the 
requested I/O 
activity belongs to 
the whitelist.

send_prc (id, 27)
nvme_write (id, slba,…)
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Whitelist Management

• A PrC value of a pre-approved I/O 
activity should be known in advance to 
create a whitelist.

• Alohomora employs both: 
§ Static PrC extraction method
§ Dynamic PrC extraction method

Call graph of a Database Program

Function call
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Extracted PrCs

• Using a call graph, potential write activates 
are identified with their PrC values.
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Outline

• Design of Alohomora

• Experimental Results



• Alohomora Host
• Extended RISC-V (PrC Enabled) CPU synthesized on VC707 FPGA board

• Alohomora-aware SSD
• PrC Whitelist Manger Implemented in OpenSSD Greedy-FTL 
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Prototype Alohomora Implementation

PCIe Cable

Alohomora Host

VC707 FPGA Board
(Extended RISC-V)

Alohomora-aware SSD

CPU: Synthesized
RISC-V  X 4 Cores
ISA: RV64GC
DRAM Size: 4GB
OS: Linux Kernel 5.10

CPU: Arm Cortex A9
DRAM Size: 1GB
FTL: Greedy-FTL
Capacity: 512GB

Cosmos+ OpenSSD Board
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Result 1: Ransomware Defense Capability

A summary of synthetic attack cases.

• Alohomora successfully defended against 37 public ransomware 
programs (e.g., GonnaCry, RAASNet, Ransom0, Hidden-tear, etc).

• Alohomora successfully defended against sophisticated ransomware 
programs.

• Intense attack scenario:
Ransomware code is injected to the 
pre-approved applications.
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Result 2: Performance Overhead

Tested on different number of whitelist entries (aloho-1K, 10K, 100K)

For aloho-100K, the average IOPS penalty is merely 3.7%.
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Conclusions

• Presented Alohomora, a whitelisting-based anti-ransomware solution.
• The whitelisting of Alohomora is based on the I/O activity of an application.

• The I/O activity of the application is represented by a hardware-supported PrC value.

• Demonstrated that Alohomora provides near-perfect protection with almost 
no I/O performance degradation.



18

Thank You


