Alohomora:
Protecting Files from Ransomware Attacks
Using Fine-Grained I/O Whitelisting

Sanggu Lee, Yoona Kim, Dusol Lee, Inhyuk Choi,
and Jihong Kim

Dept. of Computer Science & Engineering

N
‘ Seoul National University
June 28. 2022 (Virtual Event)

The 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage ‘22)

Ransomware is Becoming a Major Cyber Threat

 Potential high financial payoff made ransomware one of the most serious
threats in cyber security.

» Recent ransomware attack cases:

= Colonial Pipeline paid $4.4 million for the ransom (2021)
= CNA Financial paid $4 million for the ransom (2021)

$0.325B $1B .
pr— [

2015 2016 2017 2018 2019 2020 2021

Encrypting ransomware Global damage costs by ransomware

Existing Anti-ransomware Solutions

 Detection-centric techniques (e.g., anti-virus software)

* Recovery-centric techniques

» Host-level data recovery (e.g., cloud backup)
= SSD-level data recovery (e.g., FlashGuard (CCS’'17), SSD-Insider (ICDCS’18))

« Permission-centric techniques (e.g., whitelisting solutions)

Detection-centric techniques Recovery-centric techniques Permission-centric techniques

ransomware ransomware

anti-virus ﬂﬁ cloud a @) overwrite e §®%; Whitsisted Appications
storage

T2 H &
O behavior ‘l' D Q .§ @@E J MariaDB g

o0 | name, file size host SS D |
backup copies

|||I|‘“ |||I|“‘

— O storage wss——

Anti-virus software Host-level data recovery = SSD-level data recovery Whitelisting-based file access control

3

Limitations of Existing Anti-ransomware Solutions

 Detection-centric techniques:

= Cannot prevent unknown ransomware behavior/signatures.

* Recovery-centric techniques

» Backup operations incur excessive 1/Os.
» Performance degradation due to many backup pages.

Limitations of detection-centric techniques Limitations of recovery-centric techniques

zero-day exploits
o cloud Q i
anti-virus Q Known behavior/signature a overwrite performance

storage \ degradation
T= ®
%ﬂatum I/O overhead ‘,l, @ L_:% & []
O behavior host f:; ’2
name, size storage w—— — 7

O backup copies
Malicious behavior/signature
Host-level recovery SSD-level recovery

Limitations of Existing Anti-ransomware Solutions (cont’d)

« Permission-Centric Techniques
» Most solutions grant permissions at the application granularity.

= Cannot prevent if ransomware is injected into a pre-approved (whitelisted) program.

——

~
Y

Application
Memory

on N NN NN N N RN N R NN N N M N M M N M S,
N-—————————————————————’

__

Our Work: Whitelisting based on I/O Activity

« An /O activity represents a particular 1/O execution semantic context, an
execution path of a program up to an I/O system call.

« Alohomora: whitelisting granularity is based on I/O activity.

Ransomware cannot modify files!
Database Program

P [db_main()]“[db_update()]

o

I 9&.
%

Logging |

U NN NN N N E—

[logger ()] —’ [write ()] Alohomora SSD

P — ' D o g
(8 Ransomware / ‘ € Wnitelisted IO Actvities
(T T =) ‘!9
: | jm® Updating
| . = ey .
:\ [encrpyt_flles ()] ‘ [crypto_wrlte 0] ': -id write || Logging

Key Claim: I/O activities are The Concept of I/O Whitelisting

considered unique over different apps!

* Design of Alohomora

I/O Activity Identification Using Program Contexts (PrCs)

* |[/O activity is represented using a PrC (Program Context) value.
= A PrC value is specific to the execution path.

= APrC value is computed by summing program counter (PC) values of function
calls along the execution path up to a write-related system call.

|

E Database Program n Program Counter = n
ST ﬁ ______________ ﬁ ____________________ Y [10 Activity] [PrCValue]
| . .
i Updating ‘ [db_mam()] =) [db.up date()]ym i 128
| . | Updating [(8 + 20 + 40 + 60)
B (naino]\ (rite0)
: . / :
L II:I:I : 192
i\ N B { oggero | /:: Logging { (8 + 84 + 100)

|

How to Extract PrC?

» A frame pointer-based SW method

= The execution call addresses are acquired by backtracking ©P¢
stack frames using a frame-pointer.

«+ = Difficult to use in practice because many modern C/C++
compilers omit frame pointers.

2
Updating n Program Counter = n
. EYSS - [FER R . [e A

 The call address (return address — 4)
is saved in stack memory

(60):
&[call write()]

o

return address (12):
&[call main()]+ 4

frame pointer

return address (24):
&[call db_main()]+ 4

frame pointer

return address (44):
&[call db_update()]+ 4

frame pointer

Top of Stack

HW-based Automatic PrC Calculation

« Alohomora computes PrC value fully by hardware with an extension of a
privileged register prc.

@ N
» Aprc register is added to the Control Undati n Program Counter = n
& Status register. pdating

address is added/subtracted.

- J

Control & Status Regs
. g Control

|
General Purpose Regs +A n +A +A

CPU 0 [[r1 ||r2 | [r3 o | |r31 prc 8 28 68 128

ALU

68

Extended RISC-V CPU with PrC Support A hardware-based PrC Calculation method

10

Overview of Alohomora

« Alohomora requires modifications in:

= a host CPU
= a host OS \
L write() from app with PrC value 27
o i Added for Alohomora }
L
* Maintains the PrC value (Page2PrC Mapper VES \
of a written page. = iiiiiiii—— N ¥
S \? Page No PrCs :4_/17?_,0 Prg__ _{ P Cach
2 | 00 = ! ---I- ---------- age Cache
o |1)
N "] Block Layer
___________ P B
1
A gy_e_r_xfjr_@____» NVMe Driver)

e PrC value is saved and
restored on a context

nvme_write (id, slba,...)
send_prc (id, 27)

~
J

* Checks if the

SRle requested 1/O
,{--;:E--\I*(lp_cfc_li Whitelist Manager aCt'V'ty_ bglongs to
| Updater | Control Logic Approved PrC list the whitelist.
<-e2S M Control Logic) [= 2 f{ A LR L _ Y,

| GP Registers | | NAND Flash Memory h

11

Whitelist Management

E Database Program

» A PrC value of a pre-approved I/O 4 -

.. . main() Function call
activity should be known in advance to E o unctl
create a whitelist. 1115 Extracted PrCs

0’.‘A
" logger ()

« Alohomora employs both:
= Static PrC extraction method

» Dynamic PrC extraction method

--

Using a call graph, potential write activates ' [)
are identified with their PrC values. :

Call graph of a Database Program 12

- Experimental Results

13

Prototype Alohomora Implementation

« Alohomora Host

« Extended RISC-V (PrC Enabled) CPU synthesized on VC707 FPGA board

 Alohomora-aware SSD
« PrC Whitelist Manger Implemented in OpenSSD Greedy-FTL

Alohomora Host

VC707 FPGA Board
(Extended RISC-V)

-

CPU: Synthesized
RISC-V X 4 Cores
ISA: RV64GC
DRAM Size: 4GB

OS: Linux Kernel 5.10

J

Alohomora-aware SSD

PCle Cable '

Cosmos+ OpenSSD Board

CPU: Arm Cortex A9
DRAM Size: 1GB
FTL: Greedy-FTL
Capacity: 512GB

4)

o /

14

Result 1: Ransomware Defense Capability

« Alohomora successfully defended against 37 public ransomware
programs (e.g., GonnaCry, RAASNet, Ransom0, Hidden-tear, etc).

« Alohomora successfully defended against sophisticated ransomware

programs.
Ransomware Application e—|
Name # of PrCs Name # of PrCs 4
Gonnggg Z fi‘iﬁ%ﬁ L 5512 - Intense attack scenario:
PR 3 e 31 Ransomware codg IS |.njected to the
Hidden-tear 4 Bacula 35 pre-approved applications.
FSociety Z! MariaDB 152 _
CustomRS 60 RocksDB 51

A summary of synthetic attack cases.

15

Normalized IOPS

1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4

Result 2: Performance Overhead

[Tested on different number of whitelist entries (aloho-1K, 10K, 100K)]

... VA

B baseline D aloho-1K [0 aloho-10K] aloho-1OOK§

MariaDB RocksDB GCC Bacula

For aloho-1K, only 1.9% of average IOPS drop occurs.

For aloho-100K, the average IOPS penalty is merely 3.7%.

16

Conclusions

* Presented Alohomora, a whitelisting-based anti-ransomware solution.
* The whitelisting of Alohomora is based on the I/O activity of an application.

« The 1/O activity of the application is represented by a hardware-supported PrC value.

 Demonstrated that Alohomora provides near-perfect protection with almost
no I/O performance degradation.

17

Thank You

18

