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Ransomware is Becoming a Major Cyber Threat

 Potential high financial payoff made ransomware one of the most serious
threats in cyber security.

» Recent ransomware attack cases:

= Colonial Pipeline paid $4.4 million for the ransom (2021)
= CNA Financial paid $4 million for the ransom (2021)
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Existing Anti-ransomware Solutions

 Detection-centric techniques (e.g., anti-virus software)

* Recovery-centric techniques

» Host-level data recovery (e.g., cloud backup)
= SSD-level data recovery (e.g., FlashGuard (CCS’'17), SSD-Insider (ICDCS’18))

« Permission-centric techniques (e.g., whitelisting solutions)
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Limitations of Existing Anti-ransomware Solutions

 Detection-centric techniques:

= Cannot prevent unknown ransomware behavior/signatures.

* Recovery-centric techniques

» Backup operations incur excessive 1/Os.
» Performance degradation due to many backup pages.
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Limitations of Existing Anti-ransomware Solutions (cont’d)

« Permission-Centric Techniques
» Most solutions grant permissions at the application granularity.

= Cannot prevent if ransomware is injected into a pre-approved (whitelisted) program.
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Our Work: Whitelisting based on I/O Activity

« An /O activity represents a particular 1/O execution semantic context, an
execution path of a program up to an I/O system call.

« Alohomora: whitelisting granularity is based on I/O activity.

Ransomware cannot modify files!
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* Design of Alohomora



I/O Activity Identification Using Program Contexts (PrCs)

* |[/O activity is represented using a PrC (Program Context) value.
= A PrC value is specific to the execution path.

= APrC value is computed by summing program counter (PC) values of function
calls along the execution path up to a write-related system call.
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How to Extract PrC?

» A frame pointer-based SW method

= The execution call addresses are acquired by backtracking ©P¢
stack frames using a frame-pointer.

«+ = Difficult to use in practice because many modern C/C++
compilers omit frame pointers.
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HW-based Automatic PrC Calculation

« Alohomora computes PrC value fully by hardware with an extension of a
privileged register prc.
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Overview of Alohomora

« Alohomora requires modifications in:

= a host CPU
= a host OS \
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Whitelist Management

E Database Program

» A PrC value of a pre-approved I/O 4 -

.. . main() Function call
activity should be known in advance to E o unctl
create a whitelist. 1115 Extracted PrCs
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« Alohomora employs both:
= Static PrC extraction method

» Dynamic PrC extraction method
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- Experimental Results
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Prototype Alohomora Implementation

« Alohomora Host

« Extended RISC-V (PrC Enabled) CPU synthesized on VC707 FPGA board

 Alohomora-aware SSD
« PrC Whitelist Manger Implemented in OpenSSD Greedy-FTL

Alohomora Host

VC707 FPGA Board
(Extended RISC-V)

-
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RISC-V X 4 Cores
ISA: RV64GC
DRAM Size: 4GB

OS: Linux Kernel 5.10
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Alohomora-aware SSD

PCle Cable '

Cosmos+ OpenSSD Board

CPU: Arm Cortex A9
DRAM Size: 1GB
FTL: Greedy-FTL
Capacity: 512GB
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Result 1: Ransomware Defense Capability

« Alohomora successfully defended against 37 public ransomware
programs (e.g., GonnaCry, RAASNet, Ransom0, Hidden-tear, etc).

« Alohomora successfully defended against sophisticated ransomware

programs.
Ransomware Application e—|
Name # of PrCs Name # of PrCs 4
Gonnggg Z fi‘iﬁ%ﬁ L 5512 - Intense attack scenario:
PR 3 e 31 Ransomware codg IS |.njected to the
Hidden-tear 4 Bacula 35 pre-approved applications.
FSociety Z! MariaDB 152 \_
CustomRS 60 RocksDB 51

A summary of synthetic attack cases.
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Result 2: Performance Overhead

[ Tested on different number of whitelist entries (aloho-1K, 10K, 100K) ]
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MariaDB RocksDB GCC Bacula

For aloho-1K, only 1.9% of average IOPS drop occurs.

For aloho-100K, the average IOPS penalty is merely 3.7%.
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Conclusions

* Presented Alohomora, a whitelisting-based anti-ransomware solution.
* The whitelisting of Alohomora is based on the I/O activity of an application.

« The 1/O activity of the application is represented by a hardware-supported PrC value.

 Demonstrated that Alohomora provides near-perfect protection with almost
no I/O performance degradation.
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Thank You
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