Alohomora: Protecting Files from Ransomware Attacks Using Fine-Grained I/O Whitelisting

Sanggu Lee, Yoona Kim, Dusol Lee, Inhyuk Choi, and Jihong Kim

Dept. of Computer Science & Engineering Seoul National University

June 28. 2022 (Virtual Event)

The 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage '22)

Ransomware is Becoming a Major Cyber Threat

- Potential high financial payoff made ransomware one of the most serious threats in cyber security.
- Recent ransomware attack cases:
 - Colonial Pipeline paid \$4.4 million for the ransom (2021)
 - CNA Financial paid \$4 million for the ransom (2021)

Encrypting ransomware

Existing Anti-ransomware Solutions

- Detection-centric techniques (e.g., anti-virus software)
- Recovery-centric techniques
 - Host-level data recovery (e.g., cloud backup)
 - SSD-level data recovery (e.g., FlashGuard (CCS'17), SSD-Insider (ICDCS'18))
- Permission-centric techniques (e.g., whitelisting solutions)

Limitations of Existing Anti-ransomware Solutions

- Detection-centric techniques:
 - Cannot prevent unknown ransomware behavior/signatures.
- Recovery-centric techniques

Limitations of detection-centric techniques

- Backup operations incur excessive I/Os.
- Performance degradation due to many backup pages.

Limitations of recovery-centric techniques

Limitations of Existing Anti-ransomware Solutions (cont'd)

- Permission-Centric Techniques
 - Most solutions grant permissions at the application granularity.
 - Cannot prevent if ransomware is injected into a pre-approved (whitelisted) program.

Our Work: Whitelisting based on I/O Activity

- An I/O activity represents a particular I/O execution semantic context, an execution path of a program up to an I/O system call.
- Alohomora: whitelisting granularity is based on I/O activity.

Key Claim: I/O activities are considered **unique** over different apps! Ransomware cannot modify files!

Outline

- Design of Alohomora
- Experimental Results

I/O Activity Identification Using Program Contexts (PrCs)

- I/O activity is represented using a PrC (Program Context) value.
 - A PrC value is specific to the execution path.
 - A PrC value is computed by summing program counter (PC) values of function calls along the execution path up to a write-related system call.

How to Extract PrC?

- A frame pointer-based SW method
 - The execution call addresses are acquired by backtracking epc stack frames using a <u>frame-pointer</u>.
- Difficult to use in practice because many modern C/C++ compilers omit frame pointers.

The *call address* (*return address* – 4) is saved in stack memory

HW-based Automatic PrC Calculation

• Alohomora computes PrC value fully by hardware with an extension of a privileged register prc.

A hardware-based PrC Calculation method

Overview of Alohomora

- Alohomora requires modifications in:
 - a host CPU

Whitelist Management

 A PrC value of a pre-approved I/O activity should be known in advance to create a whitelist.

- Alohomora employs both:
 - Static PrC extraction method
 - Dynamic PrC extraction method
 - Using a call graph, potential write activates are identified with their PrC values.

Call graph of a Database Program

Outline

- Design of Alohomora
- Experimental Results

Prototype Alohomora Implementation

Alohomora Host

• Extended RISC-V (PrC Enabled) CPU synthesized on VC707 FPGA board

Alohomora-aware SSD

• PrC Whitelist Manger Implemented in OpenSSD Greedy-FTL

Result 1: Ransomware Defense Capability

- Alohomora successfully defended against 37 public ransomware programs (e.g., GonnaCry, RAASNet, Ransom0, Hidden-tear, etc).
- Alohomora successfully defended against sophisticated ransomware programs.

Ransomware		Application	
Name	# of PrCs	Name	# of PrCs
GonnaCry	7	MariaDB	152
RAASNet	5	RocksDB	51
Ransom0	3	GCC	131
Hidden-tear	4	Bacula	35
FSociety	4	MariaDB	152
CustomRS	60	RocksDB	51

Intense attack scenario:

Ransomware code is injected to the pre-approved applications.

A summary of synthetic attack cases.

Result 2: Performance Overhead

Conclusions

- Presented Alohomora, a whitelisting-based anti-ransomware solution.
 - The whitelisting of **Alohomora** is based on the **I/O** activity of an application.
 - The I/O activity of the application is represented by a hardware-supported PrC value.
- Demonstrated that Alohomora provides near-perfect protection with almost no I/O performance degradation.

Thank You