
Alohomora:
Protecting Files from Ransomware Attacks

Using Fine-Grained I/O Whitelisting

Sanggu Lee, Yoona Kim, Dusol Lee, Inhyuk Choi ,
and Jihong Kim

Dept. of Computer Science & Engineering
Seoul National University

June 28. 2022 (Virtual Event)

The 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage ‘22)

2

Ransomware is Becoming a Major Cyber Threat

• Potential high financial payoff made ransomware one of the most serious
threats in cyber security.

• Recent ransomware attack cases:
§ Colonial Pipeline paid $4.4 million for the ransom (2021)
§ CNA Financial paid $4 million for the ransom (2021)

$0.325B $1B

$5B

$8B

$11.5B

$15.5B

$20B

2015 2016 2017 2018 2019 2020 2021

Damage caused by ransomware

reached up $20 billion in 2021!

Global damage costs by ransomwareEncrypting ransomware

Existing Anti-ransomware Solutions

• Detection-centric techniques (e.g., anti-virus software)

• Recovery-centric techniques
§ Host-level data recovery (e.g., cloud backup)
§ SSD-level data recovery (e.g., FlashGuard (CCS’17), SSD-Insider (ICDCS’18))

• Permission-centric techniques (e.g., whitelisting solutions)

Detection-centric techniques

anti-virus

signature

behavior

name, file size

Recovery-centric techniques

cloud
storage

host
storage

backup copies

overwrite

Host-level data recovery SSD-level data recovery 3

ransomware ransomware
Permission-centric techniques

Whitelisted Applications
Protected Folder

Whitelisting-based file access controlAnti-virus software

4

Limitations of Existing Anti-ransomware Solutions

• Detection-centric techniques:
§ Cannot prevent unknown ransomware behavior/signatures.

• Recovery-centric techniques
§ Backup operations incur excessive I/Os.
§ Performance degradation due to many backup pages.

Limitations of detection-centric techniques

anti-virus

signature

behavior

name, size

zero-day exploits

I/O overhead

Limitations of recovery-centric techniques

cloud
storage

host
storage

backup copies

overwrite

Host-level recovery SSD-level recovery
Malicious behavior/signature

Known behavior/signature performance
degradation

5

Limitations of Existing Anti-ransomware Solutions (cont’d)

• Permission-Centric Techniques
§ Most solutions grant permissions at the application granularity.
§ Cannot prevent if ransomware is injected into a pre-approved (whitelisted) program.

Protected Folder
Whitelisted Applications

Application whitelisting-based file access control
Application

Memory
Ransomware

𝒆𝒏𝒄𝒓𝒑𝒚𝒕 ()
Ransomware injected

whitelisted application

6

Our Work: Whitelisting based on I/O Activity

• An I/O activity represents a particular I/O execution semantic context, an
execution path of a program up to an I/O system call.

• Alohomora: whitelisting granularity is based on I/O activity.

Alohomora SSD

Whitelisted I/O Activities

Database Program

𝒎𝒂𝒊𝒏()

𝒅𝒃_𝒎𝒂𝒊𝒏()

𝒘𝒓𝒊𝒕𝒆 ()𝒍𝒐𝒈𝒈𝒆𝒓 ()

𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆()

𝒆𝒏𝒄𝒓𝒑𝒚𝒕_𝒇𝒊𝒍𝒆𝒔 () 𝒄𝒓𝒚𝒑𝒕𝒐_𝒘𝒓𝒊𝒕𝒆 ()

Ransomware

I/O activity

Is notwhitelisted!

Key Claim: I/O activities are
considered unique over different apps!

𝑤𝑟𝑖𝑡𝑒

I/O activities

Ransomware cannot modify files!

The Concept of I/O Whitelisting

7

Outline

• Design of Alohomora

• Experimental Results

8

I/O Activity Identification Using Program Contexts (PrCs)

• I/O activity is represented using a PrC (Program Context) value.
§ A PrC value is specific to the execution path.
§ A PrC value is computed by summing program counter (PC) values of function

calls along the execution path up to a write-related system call.

𝑰𝑶 𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝑷𝒓𝑪 𝑽𝒂𝒍𝒖𝒆

𝟏𝟐𝟖
(8 + 20 + 40 + 60)

𝟏𝟗𝟐
(8 + 84 + 100)

𝒏 𝑷𝒓𝒐𝒈𝒓𝒂𝒎 𝑪𝒐𝒖𝒏𝒕𝒆𝒓 = 𝒏

20

8

40

60

𝒎𝒂𝒊𝒏()

𝒅𝒃_𝒎𝒂𝒊𝒏()

𝒘𝒓𝒊𝒕𝒆 ()

𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆()

84
100

𝒍𝒐𝒈𝒈𝒆𝒓 ()

Database Program

9

How to Extract PrC?

• A frame pointer-based SW method
§ The execution call addresses are acquired by backtracking

stack frames using a frame-pointer.
§ Difficult to use in practice because many modern C/C++

compilers omit frame pointers.

epc

return	address	(12):
&[call	main()]+	4

return	address	(24):
&[call	db_main()]+	4

frame	pointer

…

…

frame	pointer

𝑻𝒐𝒑 𝐨𝐟 𝐒𝐭𝐚𝐜𝐤

return	address	(44):
&[call	db_update()]+	4

(60):	
&[call	write()]

𝒎𝒂𝒊𝒏() 𝒅𝒃_𝒎𝒂𝒊𝒏() 𝒘𝒓𝒊𝒕𝒆 ()𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆()

𝒏 𝑷𝒓𝒐𝒈𝒓𝒂𝒎 𝑪𝒐𝒖𝒏𝒕𝒆𝒓 = 𝒏

8 20 40 60

frame	pointer

❶

❷

• The 𝒄𝒂𝒍𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 (𝒓𝒆𝒕𝒖𝒓𝒏 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 − 𝟒)
is saved in stack memory

8

20

40

60

10

HW-based Automatic PrC Calculation

• Alohomora computes PrC value fully by hardware with an extension of a
privileged register prc.

Extended RISC-V CPU with PrC Support

CPU

General Purpose Regs

ALU

𝒓𝟎 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟑𝟏…

Control
Logic

Control & Status Regs

𝒔𝒕𝒂𝒕𝒖𝒔 𝒆𝒑𝒄 prc

• A prc register is added to the Control
& Status register.

• Upon Call / Ret instruction, the call
address is added/subtracted.

A hardware-based PrC Calculation method

prc 0 8 128

8 20 60

28 68

40

ecallcall call

𝒎𝒂𝒊𝒏() 𝒅𝒃_𝒎𝒂𝒊𝒏() 𝒘𝒓𝒊𝒕𝒆 ()𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆()

𝒏 𝑷𝒓𝒐𝒈𝒓𝒂𝒎 𝑪𝒐𝒖𝒏𝒕𝒆𝒓 = 𝒏

8 20 40 60 𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆()64

sret

68

60

Inst call 𝒎𝒂𝒊𝒏() 𝒅𝒃_𝒎𝒂𝒊𝒏() 𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆() 𝒘𝒓𝒊𝒕𝒆 () 𝒘𝒓𝒊𝒕𝒆 ()

VFS

K
er

ne
l

Pr
oc

es
so

r

Block Layer

Whitelist Manager

NAND Flash Memory

FT
L

NVMe Driver

Page Cache

A
lo

ho
m

or
a

aw
ar

e-
SS

D
Control Logic

register read/set

Opcode
PrC

Updater
PrC

GP Registers

Added for Alohomora

Approved	PrC	list PrCs …

Page2PrC Mapper

11

Overview of Alohomora

• Alohomora requires modifications in:
§ a host CPU
§ a host OS
§ an SSD

• Maintains the PrC value
of a written page.

• PrC value is saved and
restored on a context
switch.

write() from app with PrC value 27

27100
map PrC

query PrC

• Checks if the
requested I/O
activity belongs to
the whitelist.

send_prc (id, 27)
nvme_write (id, slba,…)

12

Whitelist Management

• A PrC value of a pre-approved I/O
activity should be known in advance to
create a whitelist.

• Alohomora employs both:
§ Static PrC extraction method
§ Dynamic PrC extraction method

Call graph of a Database Program

Function call

𝒘𝒓𝒊𝒕𝒆() 𝒈𝒆𝒕𝒑𝒊𝒅() 𝒘𝒓𝒊𝒕𝒆()

Database Program

𝒎𝒂𝒊𝒏()

𝒍𝒐𝒈𝒈𝒆𝒓 ()

𝒅𝒃_𝒑𝒓𝒆𝒑𝒂𝒓𝒆()

𝒅𝒃_𝒎𝒂𝒊𝒏()

𝒅𝒃_𝒖𝒑𝒅𝒂𝒕𝒆()

Extracted PrCs

• Using a call graph, potential write activates
are identified with their PrC values.

13

Outline

• Design of Alohomora

• Experimental Results

• Alohomora Host
• Extended RISC-V (PrC Enabled) CPU synthesized on VC707 FPGA board

• Alohomora-aware SSD
• PrC Whitelist Manger Implemented in OpenSSD Greedy-FTL

14

Prototype Alohomora Implementation

PCIe Cable

Alohomora Host

VC707 FPGA Board
(Extended RISC-V)

Alohomora-aware SSD

CPU: Synthesized
RISC-V X 4 Cores
ISA: RV64GC
DRAM Size: 4GB
OS: Linux Kernel 5.10

CPU: Arm Cortex A9
DRAM Size: 1GB
FTL: Greedy-FTL
Capacity: 512GB

Cosmos+ OpenSSD Board

15

Result 1: Ransomware Defense Capability

A summary of synthetic attack cases.

• Alohomora successfully defended against 37 public ransomware
programs (e.g., GonnaCry, RAASNet, Ransom0, Hidden-tear, etc).

• Alohomora successfully defended against sophisticated ransomware
programs.

• Intense attack scenario:
Ransomware code is injected to the
pre-approved applications.

16

Result 2: Performance Overhead

Tested on different number of whitelist entries (aloho-1K, 10K, 100K)

For aloho-100K, the average IOPS penalty is merely 3.7%.

baseline

MariaDB RocksDB GCC Bacula

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0

N
or
m
al
iz
ed
	IO
PS

1.2

aloho-1K aloho-10K aloho-100K

For aloho-1K, only 1.9% of average IOPS drop occurs.

17

Conclusions

• Presented Alohomora, a whitelisting-based anti-ransomware solution.
• The whitelisting of Alohomora is based on the I/O activity of an application.

• The I/O activity of the application is represented by a hardware-supported PrC value.

• Demonstrated that Alohomora provides near-perfect protection with almost
no I/O performance degradation.

18

Thank You

