
Rethinking Block Storage Encryption with
Virtual Disks

Danny Harnik
IBM Research

Oded Naor
Technion

Effi Ofer
IBM Research

Or Ozery
IBM Research

• Block storage is an abstraction of disks.
• Disk I/O is done at a sector granularity

• Typically 512 bytes, today 4096 bytes.
• Addressed via LBA (Logical Block Address)

• Disk encryption requires encrypting all data before it hits the disk
• Main goal is Data-at-rest security - Protect against physical disk theft
• Encryption is done at a sector granularity

• To keep alignment, use length preserving encryption
• The ciphertext sector is of the exact same length as the plaintext sector

Block Storage Encryption

2

• No room for any additional per-sector information
1. Encryption is deterministic –

• Encryption of the same plaintext will always result in the same ciphertext
• Rules out Semantic Security
• Leaks information about data repeats at the granularity of an encryption block
• General encryption avoids determinism by using a per-sector nonce (IV)

• But in disk encryption no place to store the IV

2. No authentication of encryption –
• Encryption is a 1-1 mapping, so every cipher maps to a legal plaintext
• Changes or manipulation of ciphertext will be unnoticed by the data owner
• General encryption battles this using an integrity checksum (MAC)

• But in disk encryption no place to store the checksum

The Implications of Length Preserving Encryption

3

1. Use LBA (sector number) for IV –
• Different addresses will never repeat the IV
• Only overwrites use the same IV

2. Devise schemes that are safe with repeating IV –
• Most popular is AES-XTS (before that AES-CBC)
• Only information leaked is whether two “sub-blocks” at the same address have the

same plaintext
• With AES-XTS a sub-block is 32 or 16 bytes

• Note: AES-GCM leaks actual information about the data when IV repeats

Handling of Block Storage Encryption Today

4

• Today many block storage encryption mechanisms use AES-XTS
• Android, Apple Filevault, Microsoft BitLocker and Linux dm-crypt (LUKS)

• AES-XTS has the following security compromises:
• Leaking change locations: Given two versions of data written to the same sector one can

detect exactly which sub-blocks have changed
• Data manipulation attacks: Given two versions of a specific sector one can create a

combination of sub-blocks from the two and form an encryption of data that never really
existed.

• Data-at-rest security – stealing a disk is not a risk because it never contains two versions of the
same sector
• The above attacks are only relevant when eavesdropping to I/O traffic

Recap - Block Storage Encryption Today

5

1. Due to snapshot support several versions of the same sector
can appear on the same disk – data-at-rest security no longer guaranteed

2. Virtual to Physical mapping is inherent
• Can piggyback this to add per-sector metadata

Our Work
• Investigate how to integrate per-sector encryption metadata in a distributed block storage

system – Ceph RBD
• Use it to add a random IV per sector – explore the security vs. performance tradeoff

Rethinking Encryption for Virtual Disks

6

• Ceph is a popular open-source distributed storage
platform
• Supports block, object and file storage
• We focus on block – Ceph RBD

• Recently, disk encryption was added at the Ceph
client (libRBD)
• Compatible with standard LUKS encryption
• Uses AES-XTS

Ceph RBD and Encryption

7

Implemented 3 Alternatives for Storing IVs

8

Unaligned – write IV sequentially after
the sector

Object End – batch IVs to keep sector
alignment. Use Ceph object granularity to
batch all IV of an object at its end

OMAP – Store the IVs in an External DB.
Use Ceph OMAP DB which is based on
RocksDB

Read Performance

9

Write Performance

10

• Today’s commonly used block storage encryption compromises
some security aspects

• We demonstrated that we can tradeoff some performance for
better security in a distributed storage system (Ceph RBD)

• There were other attempts to tackle this:
• High level - at dm-crypt using dm-integrity (incurred high performance hit)
• Low level – at the FTL of an SSD

• Looking forward, storage with a native per-sector meta data support and API can allow
encryption at a high level with negligible performance overhead

Summary

11

