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Motivation: Why We Need Software RAID?

• RAID is widely used in multiple domains
• Superb performance, capacity, and reliability

Supercomputers CloudsDatacenters

• H/W RAID card can't carry high-speed SSDs

RAID card: 16 GB/s[1]

SSD: 560 MB/s [2]

SSD: 7 GB/s [3]
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[1] Hight Point SSD7101A-1. https://www.highpoint-tech.com/product-page/ssd7101a-1
[2] Samsung 870EVO. 2021. https://www.samsung.com/us/computing/ memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-77e250b-am 
[3] Samsung 980Pro. 2020. https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/

• Software RAID is a better candidate
• More suitable for next-generation storage
• More flexible and convenient
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Background: Review of Linux Software RAID

• Data organization of a RAID 5 system
• Chunk 
• Stripe unit (S-Unit)

• mdraid layer in Linux storage stack
• Manage underlying block devices
• Provide I/O services for VFS/FS
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Background: Crash Consistency Guarantee of mdraid  

• Issue: crash consistency of mdraid
• E.g., power failure occurs in the process of chunk write;
• Chunk becomes uncertain, which is harmful to the fault tolerance.

• Default solution: bitmap mechanism
• A group of S-Heads are clustered as Stripe block;
• Counter records  # of S-Heads in an S-Block that are being written;
• Table is flushed back to member disks in batches.
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Challenge: Is mdraid Scalable? 

• Bandwidth cannot scale as the # of CPU threads increases
• Write bandwidth saturates when the # of CPU threads reaches 9;
• Cannot exceed the bandwidth of a single SSD even with 33 threads.

• Peak throughput cannot scale as the # of SSDs increases
• Increasing the # of SSDs slightly improve throughput;
• Performance of RAID (6+1 SSDs) slightly exceeds that of single SSD.
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Unfortunately, mdraid is not scalable! 
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Challenge: What’s the Problem? 

Let’s take a closer look at the software overheads of storage stack!
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30.8% !!!

Locks

Locks become the main penalty of mdraid write operations!
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Challenge: What’s the Problem? 

CPU threads are serialized in front of the ill-designed locks!
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Our Solution: ScalaRAID
• Fine-grained lock mechanism to maximize parallelism

• Refine the scope of lock management
• Increase the # of locks with minor overheads

• Customized data structure to avoid collisions
• Different types of locks to manage data and metadata
• Scatter segments across the entire address range
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Fine-grained lock mechanism to maximize parallelism 

Idea: Multiple locks to manage different scope of resources. 

More Stripe locks More counter locks
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Customized data structure to avoid collisions

Counter lock is used to manage both data and metadata. 

mdraid rarely updates metadata (e.g., RAID shrinking).

Readers-writer lock!
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Customized data structure to avoid collisions

More locks cannot prevent CPU threads from competing for the same counter.

Use distributed blocks (D-Block) to replace centralized stripe blocks.
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Experimental Setup

• Experimental platforms
• NVMe SSDs: 7,000/5,000 MB/s (R/W)

• # of worker threads = # of fio thread[1]

• 128 Stripe locks & 16,384 counter locks

• Three schemes for comparison
• OrigRAID: adopting the default configurations of mdraid;
• HemiRAID: increasing the number of Stripe locks to 128;
• ScalaRAID:  equipping every counter with a counter lock and employ D-Block. 

Hardware
CPU: 26 core / 2.2 GHz, with hyperthreading
Memory: 8 × 16 GB DDR4 DIMM
SSDs: up to 7 × 1TB Samsung 980 Pro

Software
OS: Ubuntu 20.04
Kernel: Linux v5.11.0

Test tools
Fio v3.16 
Perf v5.11
mdadm v4.1

System configurations

[1] Nikolaus Jeremic, Helge Parzyjegla, and Gero Muehl. 2016. Improving random write performance in homogeneous and heterogeneous erasure-
coded drive arrays. ACM SIGAPP Applied Computing Review 15, 4 (2016), 31–53
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Performance Comparison 

• Bandwidth of sequential write
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ScalaRAID improves bandwidth by 89.4% while 
decreasing 99.99th latency by 85.4%!
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CPU Overhead Analysis
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Conclusion

ScalaRAID achieves scalable performance for
next-generation storage by optimizing the lock mechanism.

• Deeply analyze the CPU overheads of Linux software RAID;

• Propose fine-grained locks to maximize thread-level parallelism;

• Propose Customized data structures to avoid collisions;

• Improve throughput by 89.4% while decreasing 99.99th latency by 85.4%.
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Thank you!

Shushu Yi
firnyee@gmail.com

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage
https://github.com/ChaseLab-PKU/ScalaRAID
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