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Motivation: Why We Need Software RAID?

* RAID is widely used in multiple domains
* Superb performance, capacity, and reliability

Datacenters Clouds

. x 28
- SSD: 560 MB/s 12
 Software RAID is a better candidate | sl x 2 |

 More suitable for next-generation storage RAID card: 16 GB/s!! SSD: 7 GB/s 3]

 H/W RAID card can't carry high-speed SSDs

* More flexible and convenient

Array of many high-speed SSDs Software engine Host CPUs

HotStorage CHASELaD T

PEKING
UNIVERSITY




Background: Review of Linux Software RAID

* mdraid layer in Linux storage stack * Data organization of a RAID 5 system
* Manage underlying block devices * Chunk & stripe chunk (S-Chunk)
* Provide I/O services for VFS/FS  Stripe unit (S-Unit) & stripe head (S-Head)
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Background: Crash Consistency Guarantee of mdraid

Write req. to C

* Issue: crash consistency of mdraid
A B é

e E.g., power failure occurs in the process of chunk write;
 Chunk becomes uncertain, which is harmful to the fault tolerance.

* Default solution: bitmap mechanism

Power failure

. | A ﬂ
* A group of S-Heads are clustered as Stripe block; B is broken
e Counter records # of S-Heads in an S-Block that are being written; ‘
* Table is flushed back to member disks in batches. 2
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Challenge: Is mdraid Scalable?

e Bandwidth cannot scale as the # of CPU threads increases

* Write bandwidth saturates when the # of CPU threads reaches 9; 7 No
* Cannot exceed the bandwidth of a single SSD even with 33 threads. ) ( |
* Peak throughput cannot scale as the # of SSDs increases ﬁ

* Increasing the # of SSDs slightly improve throughput;
* Performance of RAID (6+1 SSDs) slightly exceeds that of single SSD.
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The number of CPU threads

Unfortunately, mdraid is not scalable!
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Challenge: What’s the Problem?

Let’s take a closer look at the software overheads of storage stack!

B Submit bio | |Mem copy [ ] XOR

1] Stripe lock _[l] Counter lock! Locks

30.8% !!!

Locks become the main penalty of mdraid write operations!
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Challenge: What’s the Problem?

e Details of the lock mechanism

Y d
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CPU threads are serialized in front of the ill-designed locks!

WHotStorage CHASELab UNIVERSITY




Our Solution: ScalaRAID

* Fine-grained lock mechanism to maximize parallelism
 Refine the scope of lock management
* Increase the # of locks with minor overheads

e Customized data structure to avoid collisions

* Different types of locks to manage data and metadata
e Scatter segments across the entire address range



Fine-grained lock mechanism to maximize parallelism

Idea: Multiple locks to manage different scope of resources.
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Customized data structure to avoid collisions

‘o
L)

Counter lock is used to manage both data and metadata. | —

mdraid rarely updates metadata (e.g., RAID shrinking). @ @

Readers-writer lock!

<:>1a n%:@ 1a-2 N 1 =

73 2b ¢ Sumier 2% M 72 Counter
tablelz:> table
3b )

@3_a, o e
Metadata Metadata

T1 :

T1 T2 T3 T3 Partial

| | > Serial 12 > parallel

WHotStorage CHASELab UNIVERSITY




Customized data structure to avoid collisions

C More locks cannot prevent CPU threads from competing for the same counter.
Use distributed blocks (D-Block) to replace centralized stripe blocks.

RAID
v S-Block
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Experimental Setup

* Experimental platforms
* NVMe SSDs: 7,000/5,000 MB/s (R/W)

« # of worker threads = # of fio thread!']
« 128 Stripe locks & 16,384 counter locks

* Three schemes for comparison

Hardware

CPU: 26 core / 2.2 GHz, with hyperthreading

Memory: 8 x 16 GB DDR4 DIMM

SSDs: up to 7 x 1'TB Samsung 980 Pro

OS: Ubuntu 20.04

Software ,
Kernel: Linux v5.11.0
Fio v3.16

Test tools | Perfv5.11
mdadm v4.1

* OrigRAID: adopting the default configurations of mdraid;

* HemiRAID: increasing the number of Stripe locks to 128;

System configurations

e ScalaRAID: equipping every counter with a counter lock and employ D-Block.
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Performance Comparison

* Bandwidth of sequential write * 99,99t Jatency of sequential write
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The number of CPU threads

ScalaRAID improves bandwidth by 89.4% while

decreasing 99.99t" latency by 85.4%!
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CPU Overhead Analysis

ScalaRAID achieves high bandwidth under the same CPU usage.
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Conclusion

\.

ScalaRAID achieves scalable performance for

next-generation storage by optimizing the lock mechanism.

J

* Deeply analyze the CPU overheads of Linux software RAID;
* Propose fine-grained locks to maximize thread-level parallelism;

* Propose Customized data structures to avoid collisions;

Improve throughput by 89.4% while decreasing 99.99t |atency by 85.4%.
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Hot torage

Thank you!

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage
https://github.com/ChaseLab-PKU/ScalaRAID
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