HotStorage

ScalaRAID: Optimizing Linux Software
RAID System for

Next-Generation Storage

Shushu Yi, Yanning Yang, Yunxiao Tang,
Zixuan Zhou, Junzhe Li, Chen Yue,

M youngsoo Jung, Je Zhang

CHASELal 55 UNIVERSITY

Computer Hardware And System Evolution Laboratory

KAIST

Motivation: Why We Need Software RAID?

* RAID is widely used in multiple domains
* Superb performance, capacity, and reliability

Datacenters Clouds

. x 28
- SSD: 560 MB/s 12
 Software RAID is a better candidate | sl x 2 |

 More suitable for next-generation storage RAID card: 16 GB/s!! SSD: 7 GB/s 3]

 H/W RAID card can't carry high-speed SSDs

* More flexible and convenient

Array of many high-speed SSDs Software engine Host CPUs

HotStorage CHASELaD T

PEKING
UNIVERSITY

Background: Review of Linux Software RAID

* mdraid layer in Linux storage stack * Data organization of a RAID 5 system
* Manage underlying block devices * Chunk & stripe chunk (S-Chunk)
* Provide I/O services for VFS/FS Stripe unit (S-Unit) & stripe head (S-Head)
s%;ecg{ Apps 12KB wri{}e request
Y _ T~ Ta— e
VFS/FS ," Wsiice J: : @Get stripe. _Chunk

Compute
parlty/&r N Stripe Stripe

|
|
l P1
“ “ 5(P) o0 lock l 128 — 192 K
Kernel< T~ Stripe 4] -
......... : l
P ree ___{1___.. 6(P) I\, S a
layer |° Submit / Read (apReleasa Memory !
1 “l @ req Stripe unit . Stripe| pool || = chunk et oo e====1] 1 |

NVMe
driver

A
Device{ Storage

WHotStorage CHASELab UNIVERSITY

Background: Crash Consistency Guarantee of mdraid

Write req. to C

* Issue: crash consistency of mdraid
A B é

e E.g., power failure occurs in the process of chunk write;
 Chunk becomes uncertain, which is harmful to the fault tolerance.

* Default solution: bitmap mechanism

Power failure

. | A ﬂ
* A group of S-Heads are clustered as Stripe block; B is broken
e Counter records # of S-Heads in an S-Block that are being written; ‘
* Table is flushed back to member disks in batches. 2
z2A P X
Il Being written Free

Stripe block (S- BIock)

======= [[— Counter table RAID
| _
:? P1 : a Counter SBI_OCk
Il oZea | || lea-is | | hes-1s2k1| : /’ e
S-Head i i Counter 2
[Da P2 D3 |
|
N
Disk 0 Disk 1 Disk 2 Bitmap 1 0
n n+l

WHotStorage CHASELab UNIVERSITY

Challenge: Is mdraid Scalable?

e Bandwidth cannot scale as the # of CPU threads increases

* Write bandwidth saturates when the # of CPU threads reaches 9; 7 No
* Cannot exceed the bandwidth of a single SSD even with 33 threads.) (|
* Peak throughput cannot scale as the # of SSDs increases ﬁ

* Increasing the # of SSDs slightly improve throughput;
* Performance of RAID (6+1 SSDs) slightly exceeds that of single SSD.

~Tk Onl
2 6k [Isingle SSD Il 2+1 SSDs % mseq.write (128K)®seq.write (full stripeﬂj 1.64¥<]
= 5k q 2187 — . . -
sl e §15] ./
2 3K1| o 3 5 1.27
32k 5], |5 209
8 1k - pS g 0.6 | O . . .

Q-+ £ S S S

3 5 9 17— 33 S ginge 552+\ 55%»(« sSSP sV

The number of CPU threads

Unfortunately, mdraid is not scalable!

HotStorage

CNASELab 7>

PEKING
UNIVERSITY

Challenge: What’s the Problem?

Let’s take a closer look at the software overheads of storage stack!

B Submit bio | |Mem copy [] XOR

1] Stripe lock _[l] Counter lock! Locks

30.8% !!!

Locks become the main penalty of mdraid write operations!

PEKING
UNIVERSITY

HotStorage CHASELaD T

Challenge: What’s the Problem?

e Details of the lock mechanism

Y d

1b Stripe

Stripe

2b

2a

Memory
ool
P Metadata
T1 T2
I FSerial » Serial
Stripe lock Counter lock

CPU threads are serialized in front of the ill-designed locks!

WHotStorage CHASELab UNIVERSITY

Our Solution: ScalaRAID

* Fine-grained lock mechanism to maximize parallelism
 Refine the scope of lock management
* Increase the # of locks with minor overheads

e Customized data structure to avoid collisions

* Different types of locks to manage data and metadata
e Scatter segments across the entire address range

Fine-grained lock mechanism to maximize parallelism

Idea: Multiple locks to manage different scope of resources.

; M) Hash

1b Stripe
Stripe ':>

T

Stripe -
Memory, M C?aublwléer
pool

2a 2b Counter

Memory
pool table
L L LE D
| »Serial T2 Parallel »Serial T2 Parallel
> >
More Stripe locks More counter locks

WHotStorage CHASELab UNIVERSITY

Customized data structure to avoid collisions

‘o
L)

Counter lock is used to manage both data and metadata. | —

mdraid rarely updates metadata (e.g., RAID shrinking). @ @

Readers-writer lock!

<:>1a n%:@ 1a-2 N 1 =

73 2b ¢ Sumier 2% M 72 Counter
tablelz:> table
3b)

@3_a, o e
Metadata Metadata

T1 :

T1 T2 T3 T3 Partial

| | > Serial 12 > parallel

WHotStorage CHASELab UNIVERSITY

Customized data structure to avoid collisions

C More locks cannot prevent CPU threads from competing for the same counter.
Use distributed blocks (D-Block) to replace centralized stripe blocks.

RAID
v S-Block

M Being written ™ Free

@ Counter
>»1

o1

D-Block:{A, C}, {B, D}, ...

L | T2>E> T1 “Parallel
Serial T2

WHotStorage CHASELab UNIVERSITY

Experimental Setup

* Experimental platforms
* NVMe SSDs: 7,000/5,000 MB/s (R/W)

« # of worker threads = # of fio thread!']
« 128 Stripe locks & 16,384 counter locks

* Three schemes for comparison

Hardware

CPU: 26 core / 2.2 GHz, with hyperthreading

Memory: 8 x 16 GB DDR4 DIMM

SSDs: up to 7 x 1'TB Samsung 980 Pro

OS: Ubuntu 20.04

Software ,
Kernel: Linux v5.11.0
Fio v3.16

Test tools | Perfv5.11
mdadm v4.1

* OrigRAID: adopting the default configurations of mdraid;

* HemiRAID: increasing the number of Stripe locks to 128;

System configurations

e ScalaRAID: equipping every counter with a counter lock and employ D-Block.

HotStorage

CHASELab UNIVERSITY

Performance Comparison

* Bandwidth of sequential write * 99,99t Jatency of sequential write
[origRAID[JHemiRAID ScaIaRAIDJ (lose to] - : r

. ideal case | [l] OrigRAID [| HemiRAID [} ScalaRAID(™ Blocked
£10.0k- . by counter
a8 0 8k- lock
= =2
< (>)~6k—
O o 4k
= — ©
© N — 2k-
C o —
CCB = ‘© k-

3 5 9 17 33 =

The number of CPU threads

ScalaRAID improves bandwidth by 89.4% while

decreasing 99.99t" latency by 85.4%!

PEKING
UNIVERSITY

HotStorage CHASELaD T

CPU Overhead Analysis

ScalaRAID achieves high bandwidth under the same CPU usage.

® OrigRAID ® HemiRAIDA ScalaRAID Bl Submit bio Mem copy XOR
T R S . — Stripe lock [Jl] Counter lock_| Other
g B éc?IOO

S 4k S 1 v
3 2K 3 1

C 0.0k 0.5k 1.0k 1.5k 2.0k 2.5k 3.0k D D .oalD \D
o CPU usage (%) 83 or'\gRP\\ \,\em\P‘A ca\aRP\

0.5 %

PEKING
UNIVERSITY

HotStorage CHASELaD T

Conclusion

\.

ScalaRAID achieves scalable performance for

next-generation storage by optimizing the lock mechanism.

J

* Deeply analyze the CPU overheads of Linux software RAID;
* Propose fine-grained locks to maximize thread-level parallelism;

* Propose Customized data structures to avoid collisions;

Improve throughput by 89.4% while decreasing 99.99t |atency by 85.4%.

HotStorage

CHASELab

AONTY
< 2
= ®

> @

< o)
e &

T508

PEKING
UNIVERSITY

Hot torage

Thank you!

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage
https://github.com/ChaseLab-PKU/ScalaRAID

Shushu Yi

firnyee@gmail.com

PEKING
UNIVERSITY

CHASELab

Computer Hardware And System Evolution Laboratory

mailto:firnyee@gmail.com

