
CHASELab
Computer Hardware And System Evolution Laboratory

ScalaRAID: Optimizing Linux Software
RAID System for

Next-Generation Storage

Shushu Yi, Yanning Yang, Yunxiao Tang,
Zixuan Zhou, Junzhe Li, Chen Yue,

Myoungsoo Jung, Jie Zhang

CHASELab

Motivation: Why We Need Software RAID?

• RAID is widely used in multiple domains
• Superb performance, capacity, and reliability

Supercomputers CloudsDatacenters

• H/W RAID card can't carry high-speed SSDs

RAID card: 16 GB/s[1]

SSD: 560 MB/s [2]

SSD: 7 GB/s [3]

x 28

x 2

&?
Array of many high-speed SSDs Software engine Host CPUs

!

[1] Hight Point SSD7101A-1. https://www.highpoint-tech.com/product-page/ssd7101a-1
[2] Samsung 870EVO. 2021. https://www.samsung.com/us/computing/ memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-77e250b-am
[3] Samsung 980Pro. 2020. https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/

• Software RAID is a better candidate
• More suitable for next-generation storage
• More flexible and convenient

CHASELab

Background: Review of Linux Software RAID

• Data organization of a RAID 5 system
• Chunk
• Stripe unit (S-Unit)

• mdraid layer in Linux storage stack
• Manage underlying block devices
• Provide I/O services for VFS/FS

Stripe
chunk

Stripe
unit

Stripe
head

Disk 1Disk 0 Disk 2

D1
0 – 64 k

D4 P2 D3

D2
64 – 128 K

P1
128 – 192 K

Stripe
lock

Apps

VFS/FS

mdraid

Block
layer

1 2 3

1 3 5(P)

2 4 6(P)

1
2

3
4

5
6

DRAM

uest12KB write req

Storage

NVMe
driver

Device

3a Read
Stripe unit

Stripe

SSD 0 SSD 1 SSD 2

Submit
req4a

Slice1
Compute

parity3b

Release
Stripe4b

Get Stripe2

Kernel
space

User
space

PCIe 4.0

Memory
pool

Stripe

Stripe

& stripe head (S-Head)
& stripe chunk (S-Chunk)

Chunk

CHASELab

Background: Crash Consistency Guarantee of mdraid

• Issue: crash consistency of mdraid
• E.g., power failure occurs in the process of chunk write;
• Chunk becomes uncertain, which is harmful to the fault tolerance.

• Default solution: bitmap mechanism
• A group of S-Heads are clustered as Stripe block;
• Counter records # of S-Heads in an S-Block that are being written;
• Table is flushed back to member disks in batches.

Disk 1

D1
0 – 64 k

D4 P2 D3

Disk 0 Disk 2

D2
64 – 128 K

P1

S-Head
128 – 192 K

Stripe block (S-Block)

n 2
n+1 0

Counter
Counter table
Being written Free

A B C

Write req. to C

A B X

A Y X

Power failure

B is broken

B ≠ A ⊕ X

Counter
lock

RAID

...

...

S-Block

... ...01
n+1n

Bitmap

CHASELab

Challenge: Is mdraid Scalable?

• Bandwidth cannot scale as the # of CPU threads increases
• Write bandwidth saturates when the # of CPU threads reaches 9;
• Cannot exceed the bandwidth of a single SSD even with 33 threads.

• Peak throughput cannot scale as the # of SSDs increases
• Increasing the # of SSDs slightly improve throughput;
• Performance of RAID (6+1 SSDs) slightly exceeds that of single SSD.

52
39

52
40

52
36

52
38

52
26

31
8 71
5 53

26

53
19

53
56

3 5 9 17 33
0

1k
2k
3k
4k
5k
6k
7k

The number of CPU threads

Ba
nd

w
id

th
 (M

B/
s) Single SSD 2+1 SSDs

Single SSD
2+1 SSDs

4+1 SSDs
6+1 SSDs0.6

0.9
1.2
1.5
1.8

N
or

m
al

iz
ed

 b
an

dw
id

th seq.write (128K) seq.write (full stripe)

Unfortunately, mdraid is not scalable!

Only
1.64×

CHASELab

Challenge: What’s the Problem?

Let’s take a closer look at the software overheads of storage stack!

: < @ 8> : :
7,
87,
97,
: 7,
; 7,

O
ve

rh
ea

ds

The number of CPU threads

 Submit bio Mem copy XOR
 Stripe lock Counter lock

Overhead breakdown with different number of threads
3.5%

30.8% !!!

Locks

Locks become the main penalty of mdraid write operations!

CHASELab

Challenge: What’s the Problem?

CPU threads are serialized in front of the ill-designed locks!

T1

T2

T1 T2

1a

2a

1b

2b

Serial

Memory
pool

Stripe

Stripe

T1

T3
Metadata

T2
Counter

table

T1 T2 T3

1a

2a

3a

1b

2b

3b

Serial

Stripe lock Counter lock

• Details of the lock mechanism

Our Solution: ScalaRAID
• Fine-grained lock mechanism to maximize parallelism

• Refine the scope of lock management
• Increase the # of locks with minor overheads

• Customized data structure to avoid collisions
• Different types of locks to manage data and metadata
• Scatter segments across the entire address range

CHASELab

Fine-grained lock mechanism to maximize parallelism

Idea: Multiple locks to manage different scope of resources.

More Stripe locks More counter locks

T1

T2

T1 T2

1a

2a

1b

2b Memory
pool

Stripe

Serial

Stripe

T1

T2

T1

T2

1a

2a Memory
pool

Hash
Stripe1b

2b

Parallel

Stripe

T1

T2

T1 T2

1a

2a

1b

2b

Serial

Counter
table

T1

T2

T1

T2

1a

2a

Hash

1b

2b

Parallel

Counter
table

CHASELab

Customized data structure to avoid collisions

Counter lock is used to manage both data and metadata.

mdraid rarely updates metadata (e.g., RAID shrinking).

Readers-writer lock!

Counter
T1

T3
Metadata

T2 table

T1 T2 T3

1a

2a

3a

1b

2b

3b

Serial

T1

T3
Metadata

T2
Counter

table

3a

1a-2

2a-2

3b

1b

T2
T1 T3 Partial

parallel

CHASELab

S-Head C
S-Head D

S-Block
RAID

S-Head A
S-Head B

Customized data structure to avoid collisions

More locks cannot prevent CPU threads from competing for the same counter.

Use distributed blocks (D-Block) to replace centralized stripe blocks.

à1
à1

T1

T2 X

X

X

T1 T2
Serial T2

T1 Parallel

Being written Free

D-Block:{A, C}, {B, D}, ...

2
0

...

...

Counter

CHASELab

Experimental Setup

• Experimental platforms
• NVMe SSDs: 7,000/5,000 MB/s (R/W)

• # of worker threads = # of fio thread[1]

• 128 Stripe locks & 16,384 counter locks

• Three schemes for comparison
• OrigRAID: adopting the default configurations of mdraid;
• HemiRAID: increasing the number of Stripe locks to 128;
• ScalaRAID: equipping every counter with a counter lock and employ D-Block.

Hardware
CPU: 26 core / 2.2 GHz, with hyperthreading
Memory: 8 × 16 GB DDR4 DIMM
SSDs: up to 7 × 1TB Samsung 980 Pro

Software
OS: Ubuntu 20.04
Kernel: Linux v5.11.0

Test tools
Fio v3.16
Perf v5.11
mdadm v4.1

System configurations

[1] Nikolaus Jeremic, Helge Parzyjegla, and Gero Muehl. 2016. Improving random write performance in homogeneous and heterogeneous erasure-
coded drive arrays. ACM SIGAPP Applied Computing Review 15, 4 (2016), 31–53

CHASELab

Performance Comparison

• Bandwidth of sequential write
31

8

71
5

53
26

53
19

53
56

32
1

82
0

54
19 71

19

72
38

30
63 50

74 72
50 94

52

98
93

3 5 9 17 33
0.0

2.0k
4.0k
6.0k
8.0k

10.0k

The number of CPU threads

Ba
nd

w
id

th
 (M

B/
s)

 OrigRAID HemiRAID ScalaRAID

63
90

63
25

63
25

63
25

65
20

63
25

28
68 92

2

10
04

2+1 SSDs
4+1 SSDs

6+1 SSDs0k
2k
4k
6k
8k

Ta
il

 la
te

nc
y

(µ
s)

 OrigRAID HemiRAID ScalaRAID

ScalaRAID improves bandwidth by 89.4% while
decreasing 99.99th latency by 85.4%!

Close to
ideal case Blocked

by counter
lock

• 99.99th latency of sequential write

CHASELab

CPU Overhead Analysis

0.0k 0.5k 1.0k 1.5k 2.0k 2.5k 3.0k
2k
4k
6k
8k

10k

CPU usage (%)Ba
nd

w
id

th
 (M

B/
s)

 OrigRAID HemiRAID ScalaRAID

OrigRAID
HemiRAID

ScalaRAID
1

10
100

1000

C
PU

 u
sa

ge
 (%

)

 Submit bio Mem copy XOR
 Stripe lock Counter lock Other

ScalaRAID achieves high bandwidth under the same CPU usage.

3.2 %

0.5 %

CHASELab

Conclusion

ScalaRAID achieves scalable performance for
next-generation storage by optimizing the lock mechanism.

• Deeply analyze the CPU overheads of Linux software RAID;

• Propose fine-grained locks to maximize thread-level parallelism;

• Propose Customized data structures to avoid collisions;

• Improve throughput by 89.4% while decreasing 99.99th latency by 85.4%.

CHASELab
Computer Hardware And System Evolution Laboratory

Thank you!

Shushu Yi
firnyee@gmail.com

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage
https://github.com/ChaseLab-PKU/ScalaRAID

mailto:firnyee@gmail.com

