

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage

Shushu Yi, Yanning Yang, Yunxiao Tang, Zixuan Zhou, Junzhe Li, Chen Yue, M youngsoo Jung, Je Zhang

Computer Hardware And System Evolution Laboratory

PEKING UNIVERSITY

Motivation: Why We Need Software RAID?

- RAID is widely used in multiple domains
 - Superb performance, capacity, and reliability

- H/W RAID card can't carry high-speed SSDs
- Software RAID is a better candidate
 - More suitable for next-generation storage
 - More flexible and convenient

Array of many high-speed SSDs

[1] Hight Point SSD7101A-1. https://www.highpoint-tech.com/product-page/ssd7101a-1

[2] Samsung 870EVO. 2021. https://www.samsung.com/us/computing/ memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-77e250b-am [3] Samsung 980Pro. 2020. https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/

Background: Review of Linux Software RAID

- mdraid layer in Linux storage stack
 - Manage underlying block devices
 - Provide I/O services for VFS/FS

- Data organization of a RAID 5 system
 - Chunk & stripe chunk (S-Chunk)
 - Stripe unit (S-Unit) & stripe head (S-Head)

Background: Crash Consistency Guarantee of mdraid

- Issue: crash consistency of mdraid
 - E.g., power failure occurs in the process of chunk write;
 - Chunk becomes uncertain, which is harmful to the fault tolerance.
- Default solution: bitmap mechanism
 - A group of S-Heads are clustered as Stripe block;
 - Counter records # of S-Heads in an S-Block that are being written;
 - Table is flushed back to member disks in batches.

Challenge: Is mdraid Scalable?

- Bandwidth cannot scale as the # of CPU threads increases
 - Write bandwidth saturates when the # of CPU threads reaches 9;
 - Cannot exceed the bandwidth of a single SSD even with 33 threads.
- Peak throughput cannot scale as the # of SSDs increases
 - Increasing the # of SSDs slightly improve throughput;
 - Performance of RAID (6+1 SSDs) slightly exceeds that of single SSD.

Unfortunately, mdraid is not scalable!

Challenge: What's the Problem?

Let's take a closer look at the software overheads of storage stack!

30.8% !!!

3.5

Locks become the main penalty of mdraid write operations!

Challenge: What's the Problem?

• Details of the lock mechanism

CPU threads are serialized in front of the ill-designed locks!

Our Solution: ScalaRAID

- Fine-grained lock mechanism to maximize parallelism
 - Refine the scope of lock management
 - Increase the # of locks with minor overheads
- Customized data structure to avoid collisions
 - Different types of locks to manage data and metadata
 - Scatter segments across the entire address range

Fine-grained lock mechanism to maximize parallelism

More Stripe locks

More counter locks

Customized data structure to avoid collisions

Counter lock is used to manage both data and metadata.

mdraid rarely updates metadata (e.g., RAID shrinking).

Customized data structure to avoid collisions

More locks cannot prevent CPU threads from competing for the same counter.
Use distributed blocks (D-Block) to replace centralized stripe blocks.

Experimental Setup

Experimental platforms

- NVMe SSDs: 7,000/5,000 MB/s (R/W)
- # of worker threads = # of fio thread^[1]
- 128 Stripe locks & 16,384 counter locks

Hardware	CPU: 26 core / 2.2 GHz, with hyperthreading
	Memory: 8 × 16 GB DDR4 DIMM
	SSDs: up to 7 × 1TB Samsung 980 Pro
Software	OS: Ubuntu 20.04
	Kernel: Linux v5.11.0
Test tools	Fio v3.16
	Perf v5.11
	mdadm v4.1

System configurations

• Three schemes for comparison

- **OrigRAID**: adopting the default configurations of mdraid;
- HemiRAID: increasing the number of Stripe locks to 128;
- ScalaRAID: equipping every counter with a counter lock and employ D-Block.

Performance Comparison

• Bandwidth of sequential write

• 99.99th latency of sequential write

ScalaRAID improves bandwidth by 89.4% while decreasing 99.99th latency by 85.4%!

ScalaRAID achieves high bandwidth under the same CPU usage.

Conclusion

ScalaRAID achieves scalable performance for next-generation storage by optimizing the lock mechanism.

- Deeply analyze the CPU overheads of Linux software RAID;
- Propose fine-grained locks to maximize thread-level parallelism;
- Propose Customized data structures to avoid collisions;
- Improve throughput by 89.4% while decreasing 99.99th latency by 85.4%.

Thank you!

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage https://github.com/ChaseLab-PKU/ScalaRAID

Shushu Yi firnyee@gmail.com

CHASELab

Computer Hardware And System Evolution Laboratory

PEKING UNIVERSITY

