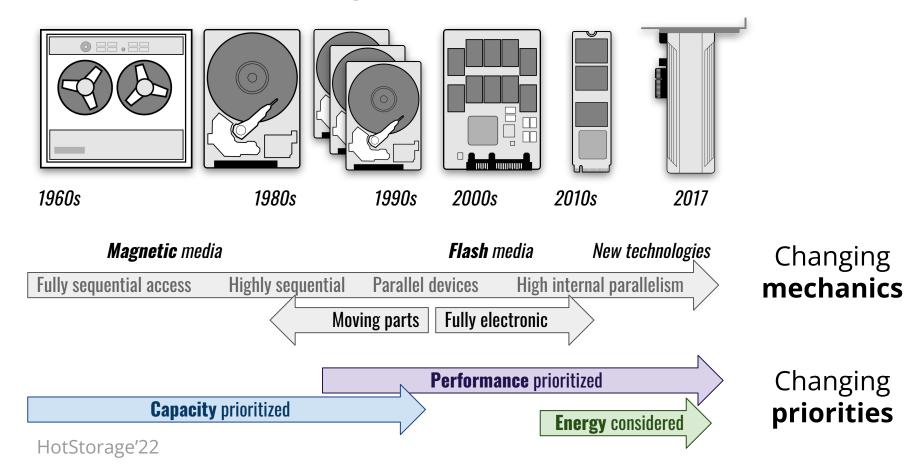


When Poll is More Energy Efficient than Interrupt

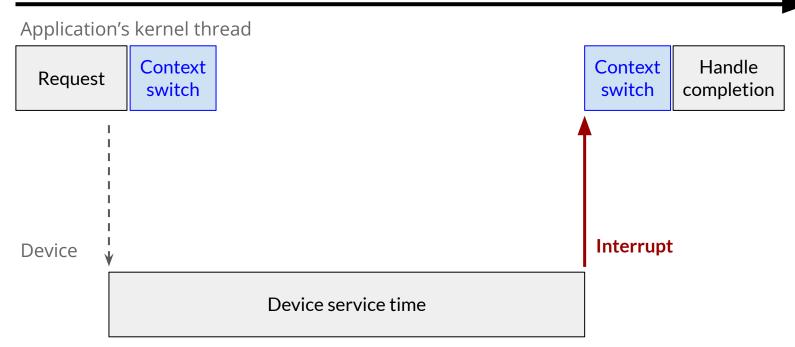

Bryan Harris and Nihat Altiparmak

Computer Systems Lab Computer Science & Engineering Department

UNIVERSITY OF LOUISVILLE

June 27, 2022

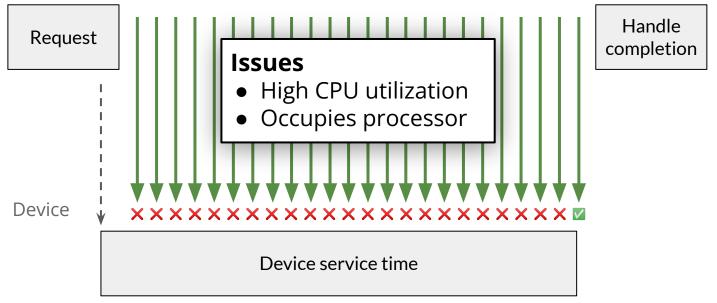
Trends in data storage



IO Completion

Interrupt

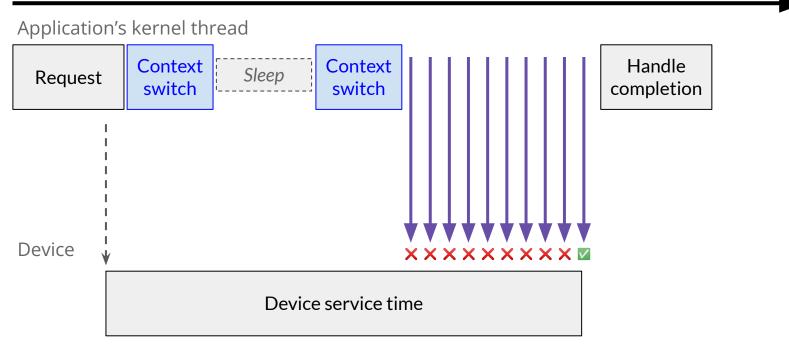
time



4

Polling (Classic)

time

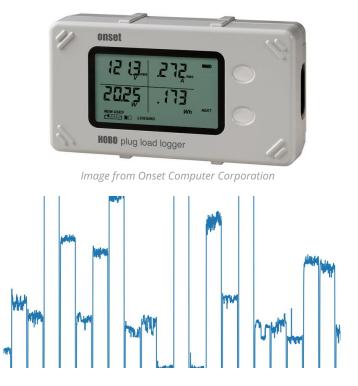

Application's kernel thread

Polling (Hybrid)

time

HotStorage'22

6


Related Work

- **"When Poll is Better than Interrupt"** by Yang, Minturn, and Hady (*FAST* '12)
- "Reducing DRAM Footprint with NVM in Facebook" by Eisenman et al. (*EuroSys* '18)
- "FlashShare: Punching Through Server Storage Stack from Kernel to Firmware for Ultra-Low Latency SSDs" by Zhang et al. (OSDI '18)
- Polling also supported in *io_uring* and *SPDK*

Experimental setup

Power Measurement

Onset HOBO plug meter logs power, current, etc., every second, for the entire system.

Workloads *fio* ("Flexible IO tester")

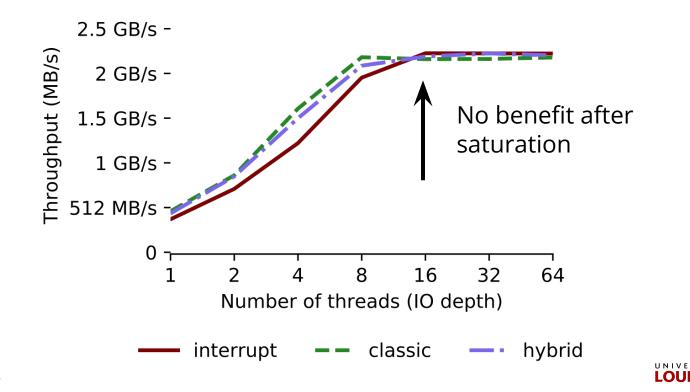
- preadv2
 - O_DIRECT
 - RWF_HIPRI (polling)
- ext4 file system
- "none" IO scheduler

Range of request sizes and threads

Goals of Polling

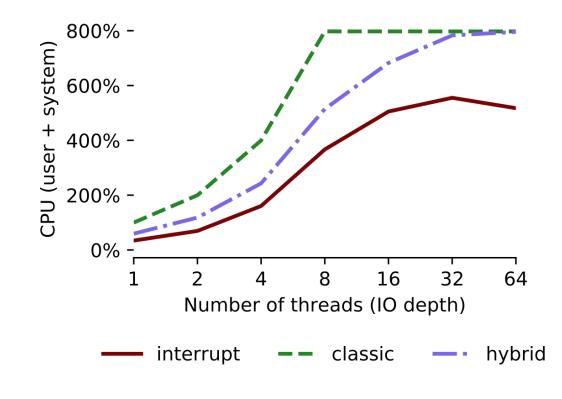
Both classic and hybrid polling show **improved performance** over interrupts.

- Shorter latency
- Higher throughput



Obs. 1: Polling improves performance

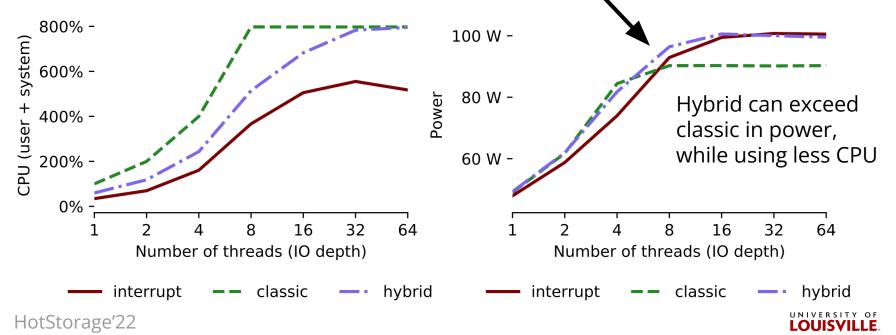
	1 Thread		8 Threads	
IO Completion	Latency	IOPS	Latency	IOPS
Classic polling	8.1 μs	120,470	13.6 µs	571,659
Hybrid polling	8.5 μs	113,846	$13.9~\mu s$	546,968
Interrupt	$10.1 \ \mu s$	96,722	$15.0\ \mu s$	511,895

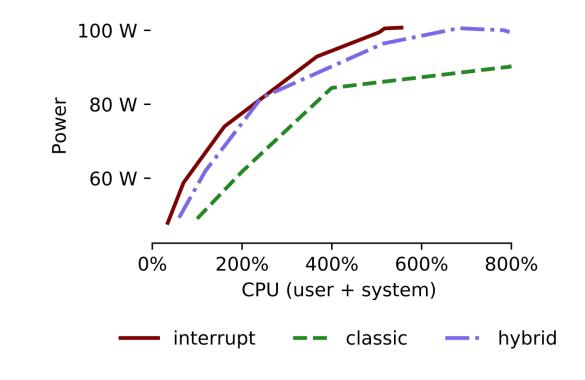

Obs. 1: Polling improves performance

HotStorage'22

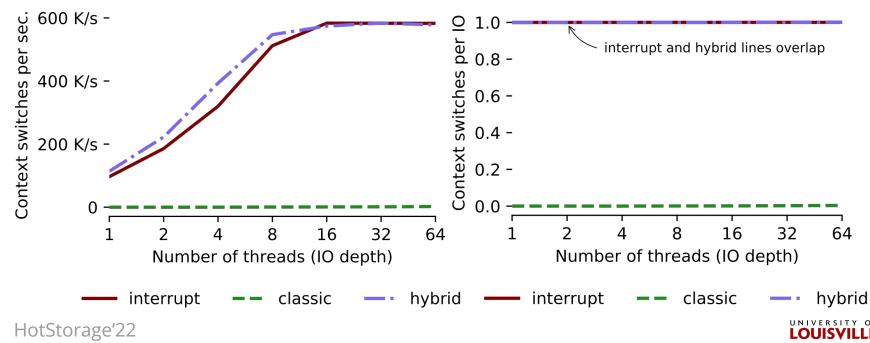
. 12

Obs. 2: Hybrid polling reduces CPU usage over classic polling

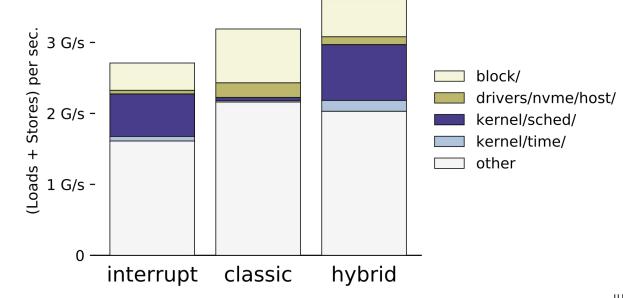



Costs of Polling

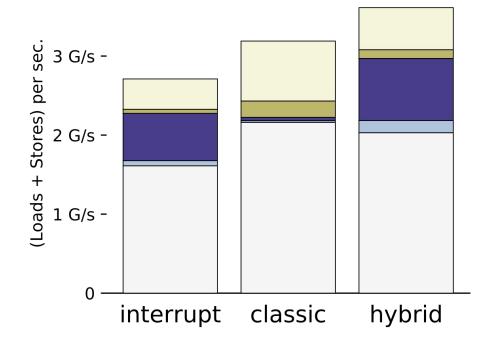
CPU utilization does not directly correspond to power consumption of the entire system.



Obs. 3: CPU does not directly correspond with power consumption

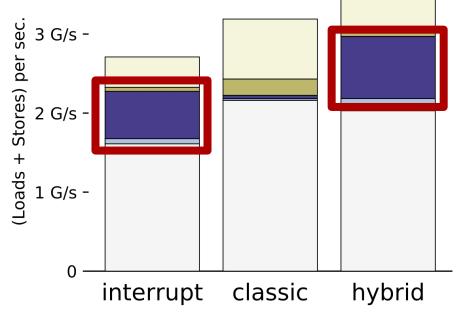


Hybrid polling triggers as many **context switches** as interrupts, while classic polling triggers none.



Hybrid polling has a high cost in **load/store operations** associated with context switches.

Obs. 5: Load/store costs

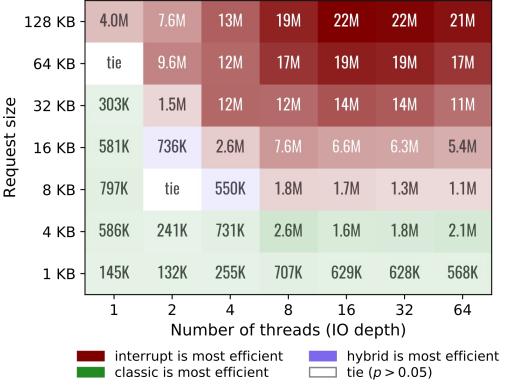


Source	Interrupt	Classic	Hybrid
block/	386	759	533
 blk_poll	0	219	70
<pre>blk_mq_* (36 functions)</pre>	111	158	156
(109 other functions)	274	383	307
drivers/nvme/host/	51	207	111
kernel/sched/	598	41	786
	13	0	13
psi_task_change	11	0	13
update_load_avg	14	0	22
(285 other functions)	560	41	739
kernel/time/	65	22	154
 ktime_get	10	14	22
<pre>*hrtimer* (33 functions)</pre>	0	1	100
(56 other functions)	55	8	33
(other sources)	1611	2160	2029
Total	2710 M/s	3190 M/s	3612 M/s

Obs. 5: Load/store costs

CPU scheduling due to context switches

Source	Interrupt	Classic	Hybrid
block/	386	759	533
blk_poll	0	219	70
<pre>blk_mq_* (36 functions)</pre>	111	158	156
(109 other functions)	274	383	307
drivers/nvme/host/	51	207	111
kernel/sched/	598	41	786
schedule	13	0	13
psi_task_change	11	0	13
update_load_avg	14	0	22
(285 other functions)	560	41	739
kernel/time/	65	22	154
ktime_get	10	14	22
<pre>*hrtimer* (33 functions)</pre>	0	1	100
(56 other functions)	55	8	33
(other sources)	1611	2160	2029
Total	2710 M/s	3190 M/s	3612 M/s


Obs. 5: Load/store costs

Loads due to polling

Source	Interrupt	Classic	Hvbrid
block/	386	759	533
blk_poll	0	219	70
<pre>blk_mq_* (36 functions)</pre>	111	158	156
(109 other functions)	274	383	307
drivers/nvme/host/	51	207	111
Kerner/ Seneu/	570	TI	700
schedule	13	0	13
psi_task_change	11	0	13
update_load_avg	14	0	22
(285 other functions)	560	41	739
kernel/time/	65	22	154
ktime_get	10	14	22
<pre>*hrtimer* (33 functions)</pre>	0	1	100
(56 other functions)	55	8	33
(other sources)	1611	2160	2029
Total	2710 M/s	3190 M/s	3612 M/s

Polling can be **more energy efficient** than interrupts.

Conclusions

- Both polling methods achieve their design goals of improved performance
- Hybrid polling does reduce CPU usage, but not power

- Classic polling is more energy efficient than both interrupts and hybrid polling for low latency requests
- Hybrid polling has costs of both:
 - *context switching* cost associated with interrupts
 - *polling* cost associated with polling

Discussion

- ULL is so fast, consider using polling, even while valuing energy efficiency
- We expect even lower latency devices in the future

Questions?

