
Infusing Pub-Sub Storage with
Transactions

1

Liana V. Rodriguez, John Bent, Tim Shaffer, Raju Rangaswami

Background

q Storage systems are complex and any new feature addition requires

significant modifications to their codebase.

q Examples of frameworks that allow incorporating new features with

little effort are the vnode API and stackable file systems.

q Other work such as ABLE[1] enables extensions at the block layer

and encapsulates storage functionality in the form of a library.

2

[1] ”The Case for Active Block Layer Extensions” ACM Operating
System Reviews, 2006

3

X X X ✓ ✓

Storage
access

Transactional
guarantees

NO
Read/Write

amplification

Independent
Scale and

deployment

Ease of
development

✓ ✓ X ✓ ✓

✓ X ✓ ✓* X

✓ ✓ ✓ X XXX

Properties of Extensible Storage Systems

* Frameworks such as ABLE are tightly coupled and therefore do not scale independently.

Integrated

Interposed IO

Pub-Sub

FDMI

Extensible Storage: FDMI in CORTX Motr

4

The FDMI Source is part of the storage server and is
the only entity that manipulates the storage system.

The FDMI Source Dock communicates with FDMI
source using source specific record functions.
The FDMI Plugin Dock interacts with each plugin and
is responsible for registering and de-registering
plugins.

The FDMI Plugin implements features we want to
incorporate into the storage system.

q FDMI plugins subscribe to client operations and
potentially make storage system changes in response.
q Plugin actions often depend on the state of storage.
q Transactional coupling executes plugin operations

atomically simultaneously with or upon completion of a
client-initiated operation.
q Plugin actions stay consistent with the state of the

storage system.
5

Transactional Coupling

Plugin Classes

Ø Class A
Plugins get notified of committed transactions reliably and do not add or modify
anything in the source storage system.

qI/O profiling
ØClass B

Plugins get notified of committed transactions, and in response can generate
additional CORTX transactions that are guaranteed to commit if the plug-in runs
successfully.

q Semantic Enhancer, Async Compression
Ø Class C

Plugins get notified of source transaction operations prior the source transaction
commit so they can update and commit transactions collaboratively with the client.

q Dynamic Tiering, Caching, Inline Compression, Inline Encryption and Inline
Deduplication 6

Class A plugin

7

FDMI plugin CORTX client

FDMI plugin
dock

FDMI source dock

FDMI source

Storage core

q FDMI records are generated

after client operations have

been committed at the storage

core.

q A special Release message is

sent from plugin to source

whenever records need to be

discarded.

Client
operation

commit_tx

post_record

send_record

deliver_recordrelease

deliver_release

discard_record

ack

store_record

Class B plugin

8

FDMI plugin CORTX client

FDMI plugin
dock

FDMI source dock

FDMI source

Storage core

q FDMI records are generated after

client operations have been

committed at the storage core.

q Plugin operations can be committed

after initial client operations.

q A Release message is sent from

plugin to source when the record

can be discarded.

Client
operation

client_commit_tx

post_record

send_record

deliver_recordrelease

deliver_release

discard_record

ackPlugin
operation

plugin_commit_tx

store_record

Class C plugin

9

q FDMI records are generated after

client operations have been

initiated at the storage core.

q Plugin-initiated operations are

added to tje client-initiated

transaction.

q The plugin’s Release message

discards the record at the source.

FDMI plugin CORTX client

FDMI plugin
dock

FDMI source dock

FDMI source

Storage core

start_tx

post_record

send_record

deliver_recordrelease

deliver_release

discard_record

ackPlugin
operation

commit_tx update_tx

store_record

Client
operation

10

Categorizing Plugins

A I/O and System profiling A

B
Backup/Replication,
Compression, Encryption,
Semantic Enhancer, etc.

B,C

Plugin
Class

Plugins
Integrated Interposed FDMI

S T N E D S T N E D S T N E D

C Tiering, Caching, I/O
offloading, etc.

C

S
Storage access

T
Transactional

N
NO R/W amp.

E
Independent Scaling

D
Ease of development

Limitations and Discussion

11

q FDMI introduces overheads by adding multiple
hops to the I/O path

q FDMI implementation can be optimized
q Caching client I/O payloads at FDMI source
q Offload computation to the FDMI source

q Generality evaluation using other storage
systems (e.g., Ceph, Swift, and MinIO)

Conclusions

12

q FDMI is a pub-sub architecture that enables storage
plugins with transactional guarantees.

q FDMI improves plugin development experience and
makes plugins independently scalable.

q FDMI uses three plugin classes to address the needs
of a wide variety of storage features.

q FDMI is a new design point for next-generation
scalable and extensible storage systems.

Thank you!

13

14

Storage Plugins Integrated Interposed FDMI

S T N E D S T N E D S T N E D

I/O profiling A

System profiling A

Backup/Replication B,C

Deduplication B,C

Encryption B,C

Compression B,C

Integrity Checker B,C

RAID Mirroring B,C

Semantic Enhancer B,C

Versioning B,C

Data Reorganization B,C

Tiering C

Caching C

I/O off-loading C

I/O shepherding C

Examples of Plugins

