HotStorage’22

Hello Bytes, Bye Blocks: PCle Storage Meets
Compute Express Link for Memory Expansion

Myoungsoo Jung

High-Level Summary

There is a need for
storage devices as
working memory

Can achieve ~50x
larger memory

PCle
SSD

<2>

Emerging CXL can

make it possible
(+ cache-coherent)

Host PCle
CPU SSD

Byte- Block-
semantic semantic

We propose a
“storage-integrated
memory expander”

g

.
oL Wy cxL ssp
o (D TN

C\\)/ Hardware prototyping

C\D/User guides for better use

1. Long-Standing Dream

PCle Storage as Working Memory

<4>

Load/Store

...

PCle
SSD

...

Working memory

Using SSD as working
memoryis a long-standing
dream considering its
larger storage capacity and
data persistence

P Benefits: Larger Memory

Chip-to-Chip comparison

(NN [AT TN

16x
DRAM NAND
Chip Flash Chip

The capacity of the NAND

flash chip is 16x larger than

the DRAM chip. In parallel,
flash offers excellent
persistence capability

<5>

Capacity comparison at the same price

(AN

DRAM
Chip

~50X

Furthermore, we can
buy several NAND flash
chips with a single
DRAM chip price.

NAND
Flash Chip

NAND
Flash Chip

P> Benefits: Larger

CAMEL <6>

Recommendation system

ML-based automotive system

Achieving larger memory
(with data persistence) can
open a new door for big
data applications (more
exploration and more
analysis).

P Conventional Attempts

There were several
attempts to use SSD as
working memory by
supporting byte-
addressability.

Industry
LA o Microsemi
F— ; e e
nvim-,: PvR
8.14 Persistent Memory Region
NAVAY (S
standard

<7>

28-550
controlier I

Lo Microsemi

nvim ., : PvMR

EXPRESS.

8.14 Persistent Memory Region

<8>

: NVRAM cards

of Conventional Attempts

Backend media

{ CPU P

: O
: A
>
<

The conventional attempts
expose to
gap the byte and block I/O
granularity and hide the long
latency of SSD backend block
media as much as possible.

v

| -

Lo Microsemi :

nvim ., : PvMR

EXPRESS.

8.14 Persistent Memory Region

<9>

NVRAM cards

!"t:_'.;ﬂ'i‘ :

ﬁa"_f

o) nventional Attempts

Load

PCle

Store

Thus, CPU can access
SSD with load/store
instructions (e.g., byte-
addressability via MMIO).

: O
: X
>
: <Z

SSD’s internal DRAM
space is mapped to
PCle configuration
space (e.g., BARs).

2. Why CXL? (Not Conventional Attempts, PCle BAR?)

of Conventional Attempts

Memory expansion
using PCle BAR is
due to

its limitation.

<11>

CPU

Load

Store

PCle
BAR

P Good Enough PCle Bandwidth

<12>

PCle
BAR

Because of PCle

performance?

No, the PCle bandwidth
is good enough for the

remote memory.

AA AAAAAAL

WAV S VAVEVAVEVAV.

PCle Gen6 (16x): 121GB/s

P But, Non-Cacheable Access

The limitation
comes from the
design principle

of PCle BAR.

PCle
BAR

P But, Non-Cacheable Access

PCle BAR is used

for communication

between the CPU
and the SSD.

=i . -
PCle 113l e T e
\ z z z
CPU BAR etify \2‘ e : e e e
Store DRAM

<14>

P But, Non-Cacheable Access

Thus, Intel and AMD
{o]§
PCle-related memory
requests to prevent the
PCle devices’ malfunction.

intel AMD

CPU

Advocation: CXL for Memory Expansion

Instead of the conventional

approaches, we advocate

emerging cache-coherent

interconnection technology,
called CXL.

Host
CPU

PCle-attached
device

CAMEL <16>

P CXL: Multi Protocols

CXL supports
multi protocols on
top of the PCle
physical link.

Host PCle-attached
CPU device
AU SR

CAMEL <17>

P CXL: Multi Protocols

The differences
come from how they
consider the PCle-
attached device.

Consider PCle-attached device as: I/0 device Cache memory Working memory
* Memoryrequests
.| » CPU-device (device — host) * Memoryrequests
Role of protocol: R i)
communication » Coherent requests (host — device)

(host [~] device)

PCle-attached
device

CAMEL <18>

P CXL: Multi Protocols

CAMEL <19>

Working memory

e Memoryrequests
(host — device)

PCle-attached
device

Since CXL.mem is
what the memory
expander mainly
requires, let’s check
how this protocol
works.

P> Cacheable Access

<20>

Thus, CPU can

access the SSD

with load/store
instructions.

Load
CPU

Cache Store

If we support CXL.mem in
SSD, it can expose it’s the
underlying device’s memory
to a host’s physical memory
map as HDM (Host-managed
Device Memory).

NAND » '

HDM

ANERRERRE RODRRRRRRRORC T
CXL.mem supported SSD

P> Cacheable Access

Since the hOS_t- Note that HDM is
managed device accessed via CXL
memory is cacheable, interconnection

memory access can be
hit in the on-chip cache.

Cache CPU

hit | W N - HDM
Cache

L
CXL.mem supported SSD

<21>

NAND : '

Side-by-Side Comparison

Conventional byte-addressability over

CPU Load CPU
Memory/
Store Buffer Ty Cache
I

Now, let’s compare
the conventional and
proposed byte-
addressability side by
side.

<22>

Proposed byte-addressability over CXL

HDM

NAND

Side-by-Side Comparison

Conventional byte-addressability over

CPU

<23>

Load

Memory/

Store

Cache

Local
memory

Buffer

EHI CPU

DRAM Cache

The memoryover PCle
BAR is excluded from
the memory hierarchy
{ CPU
cache).

Memory over
PCle BAR

Proposed byte-addressability over CXL

Load

HDM
Store

Cache

Local
memory

Memory (HDM)
over CXL

NAND

The memoryover CXL
Is included in the
memory hierarchy (can
fully enjoy CPU cache).

3. Storage-Integrated Memory Expander

Design #1: Device Type Consideration

In order to enable
storage-integrated
memory expander over
CXL, we have to decide
CXL device type first.

@Pro posed
CXL SSD

<25>

P CXL Device: Mix & Match CXL Protocols

%X

We can compose CXL
devices by mixing
and matching CXL

protocols.

CAMEL <26>

P CXL Device: Mix & Match CXL Protocols

| There are
three types of
CXL devices.

Type 1 device Type 2 device Type 3 device Y it
(CXL.io + CXL.cache) (CXL.io + CXL.cache + CXL.mem) (CXL.io + CXL.mem) A

J

o

CXL.cache CXL.cache | CXL.mem

CAMEL <27>

P Best-Fit: Type 3 CXL Device

Between two CXL.mem-
supported devices, the type
3 device is the best fit for
storage-integrated

Type 2 device Type 3 device memory expansion —Why?

(CXL.io + CXL.cache + CXL.mem) (CXL.io + CXL.mem)

CXL.cache CXLmem

CAMEL <28>

) of Type 2 CXL Device

ol

Ctrl.

CPU | - -

........ e I

 Cache oRAML
[T TN

Let’s suppose
that the CXL SSD

IS type 2. _
Type 2 device
(CXL.io + CXL.cache + CXL.mem)

CXL.cache

CAMEL <29>

) of Type 2 CXL Device

Then, the address
spaces that the CPU
and SSD manage
should be coherent.

o |
o [l

Cache gDRAMg i E i

Type 2 device
(CXL.io + CXL.cache + CXL.mem)

CXL.cache

CAMEL <30>

>

CAMEL <31>

of Type 2 CXL Device

In other words, it
causes excessive cache
coherency traffic,
which slows down

memory access.
CPU iNANDi i

Type 2 device
(CXL.io + CXL.cache + CXL.mem)

CXL.cache

Design #2: Enable CXL SSD (Type 3)

-
@
N

CXL-enabled
CPU

Conventional T Proposed
PCle SSD & CXLSSD
A Hn——— A

<32>

Then, now let’s talk
about how we can
enable CXL SSD

(type 3).

P At A Glance: CXL SSD & CXL-enabled CPU

CXL-enabled CPU Proposed CXL
SSD

 DRAM

CXL Crl. E2SS

You can see at a glance
what CXL SSD and CXL-
enabled CPU look like
with this drawing.

<33>

P At A Glance: CXL SSD & CXL-enabled CPU

CXL-enabled CPU Proposed CXL
SSD

 DRAM

=0 Eul MO

Load/St)
b R When there is a

cache miss, a
memory request
arrives at CXL RP.

<34>

P At A Glance: CXL SSD & CXL-enabled CPU

CXL-enabled CPU Proposed CXL
SSD

 DRAM

CXL Citrl.

CXL transaction packet
CXL RP generates
transaction packets
(e.g., CXL flit) based on
the CXL.mem/CXL.io
protocol.

<35>

P At A Glance: CXL SSD & CXL-enabled CPU

CXL-enabled CPU Proposed CXL
SSD

 DRAM

CXL Citrl.

I/0
command CXL controller parses
request information
from the CXL transaction
packet and sends it to
the backend

<36>

P Simple Modification is Enough

CXL-enabled CPU Proposed CXL
SSD

. DRAM | [oid}

O | CXL Citrl.
o8 RP
From the
; arch_ltecturql | BN W
V|ewp0|nt, a minor
modification is jeatety + control + read/write
enough to enable a packet interfaces interfaces
CXL SSD formatting (& ([0)] (CXL.mem)
PCle NVMe
EP Ctrl.
ANTNE D"
Conwventional CPU Conwentional SSD

<37>

Performance Projection

-
@
N

CXL-enabled
CPU

@ Proposed
CXL SSD
U

<38>

o RISC-V

RISC-V 64 bit O3
128 KB L1 cache
4AMB L2 cache

Z-NAND emulation

» 32GB capacity

OpenExpress-based

XSeparated customized FPGA board (16nm)

We speculate how much
effect a CXL SSD has on
system performance
using our CXL hardware
prototype.

P Experimental Group

PCle CXL DRAM

-
@
N

CXL-enabled
CPU

SSD CXL SSD

Conventional @ Proposed _ [
— i

<39>

In addition, we evaluate a
local DRAM-only system
(DRAM) and PCle BAR-
based memory expander

(PCle).

P Result Analysis

When we compare

CXL with PCle, CXL

performance is much
better, thanks to

cache hits.
PCle (N DRAM
600 . 600 . 600
@ $500 $500 | g500
=7 (&) (&) [&]
st ot abled 400 400 400
'C?P”S € 2300 2300 2300 ‘
(= = = 129.5x 1|
3200 3200 3200 |
@ © @
—100 —100 —100
0 - 0 - 0
= PCle CXL DRAM PCle CXL DRAM PCle CXL DRAM
Conventional @ Propose
SSD d EREN: RRAR i s
HEEE:EEEE a=1 Average «a a=0.001
Lowest locality Highest locality

<40>

P Result Analysis

PCle

Conventional
SSD

<41>

CXL

-
@
N

CXL-enabled
CPU

@ Progose
-l SSD

DRAM

Latency (cycles)
S
(=)

When we compare CXL
with DRAM, CXL is

if it cannot enjoy

cache hit.

600

15 (G
o o
o o

- R
o O
(=rau=)

84.1x 1

o

PCle CXL DRAM

gi=4

Lowest locality

Latency (cycles)
S
o

600

SE=IN T
o o
o o

- N
==
o o

o

‘ ‘

PCle CXL DRAM

Average a

Latency (cycles)
&5
(=)

600

B~ O
o o
(=) =)

- N
o O
(=)5 =)

o

PCle CXL DRAM

«=0.001

Highest locality

P Result Analysis

PCle

Conventional
SSD

<42>

CXL

-
@
N

CXL-enabled
CPU

@ Progose
il SSD

DRAM

Latency (cycles)
S
=)

However, it could be okay
as the lowest locality is rare
in real applications; CXL can

achieve performance
similar to DRAM on average
or high locality.

600

15 (G
o o
o o

= N
o O
(=rau=)

o

PCle CXL DRAM

gi=4

Lowest locality

Latency (cycles)
S
(=]

600

SE=IN T
o o
o o

= N
==
o o

o

9.3x |

——

PCle CXL DRAM

Average a

Latency (cycles)
S
=)

600

B~ O
o o
(=) =)

= N
o O
(=)5 =)

o

2.4X |

PCle CXL DRAM

«=0.001

Highest locality

4. User Guide #1 —Pooling

Needs: Memory Pooling

Users might want to
maintain a memory
pool that allows allocate
or free the memory
resources.

<44>

Resource
allocate

CXL
SSD

CXL
SSD

CXL
SSD

CXL
SSD

Resource
free

CXL
SSD

CXL
SSD

Memory resource pool

Guide

L

-1: Resource Expansion

<45>

CXL
SSD

CXL
SSD

CXL
SSD

CXL
SSD

CXL
SSD

CXL
SSD

Memory resource pool

As the first step,
users have to
increase the number
of pooled memory
resources.

P #1-1: CXL Switch

lHHHHIH

CXL
SSD

CXL
SSD

memoryresource =1

<46>

If users adopt a CXL

switch, they can
increase the number
of memoryresources
from 1 to N.
CXL
\ Switch 4
CXL CXL CXL
SSD SSD SSD
«=a X[
<= (XL 3D
cxL D
SSD

memoryresource =N

P #1-1: CXL Switch

<47>

CXL
SSD

CXL
SSD

memoryresource =1

Towards host

o
(p]
D
Fabric
CXL
\ Switch 4 o a a
_ wn %) n
Q o) a
CXL CXL CXL
SSD SSD SSD
Towards CXL devices
«=x XL
<= (XL 3D
CXL 3D
SSD

memoryresource =N

The switch has a fabric
manager that can
connect USP(s) and
DSP(s) based on what
the system demands

Guide #2: Resource Pooling

As the second step,
resource pooling should be

supported by m_ultlple hosts Host A Host B
when the multiple memory
expanders are ready.

Resource Resource
allocate free

<49>

P+ 2-1: Switch Virtualization

The multi-host

Host A tost AN 1ost 5 connection can be
° ° managed by CXL

switch virtualization.

CXL CXL
\ Switch / \vSwitch
CXL CXL CXL CXL CXL CXL
SSD SSD SSD SSD SSD SSD
Host A Host A Host B
«=u X[«=u X[
«=x X[3D «=. XL 5D
cxL >D cxL D
SSD SSD

<50>

CXL
\ Swi_tch y

CXL CXL
SSD SSD

«=n CX|
<= (XL 3D
cxL 3D

SSD

<Hh1>

P+ 2-1: Switch Virtualization

Towards host

o o
[9p] [9p]
D -
CXL F :
; ; abric
F vFabric vFabric
\vSwitch , manager
o (el o
) (7p] (7p]
af | la a)
CXL CXL CXL
SSD SSD SSD

Towards CXL devices

Virtualized switch can

remember the connection
between USPs and DSPs,
and provide a unique path

«=u X[
«=x X 5D
L per host.
SSD

P 1 2-2: Device Virtualization

for fine-grained
CXL CXL

\vSwitch \vSwitch SR
= = management.

s%p 5 s%b = voxt | amevoxt [e voxt
Host A Host B Host A Host B

= (XL
«=. XL 3D
cxL 3D

SSD

Moreover, each CXL
SSD can be virtualized

<h2>

P 1 2-2: Device Virtualization

CXL CXL
\vSwitch \vSwitch

CXL CXL CXL
=n VCXL = VCXL = VCXL
i [Nl (AR W | Wsoo | W
Host A Host B Host A Host B

= XL
= XL >D
CXL >D

SSD

<b3>

CXL
SSD

Logical
device up
to #16

Asingle CXL SSD can be
divided into 16 logical
devices and thus can be
shared by multiple hosts.

5. User Guide #2 —Storage-Aware Annotation

Needs: Latency & Persistence Control

CXL-enabled CPU Proposed CXL

Users also might SSD
want to avoid
SSD
behaviors.

 DRAM '

CXL Ctrl. IIIII

<55>

load latency

<56>

Expected

=us ??

CXAL-enabled CPU

: Internal Tasks

Proposed CXL
SSD

DRAM | (&1

NAND ' However, memory
Sl requests can be
""" delayed due to SSD’s
""" internal tasks, such as

W S read reclaiming and

garbage collection.

: Internal Buffer

Tolerable
flush latency

=ms ?? CXL-enabled CPU Proposed CXL
SSD

 DRAM | [&1d]

CXL Ctrl. ----- ,,,,,

However, users can

experience long flush

----- latency due to SSD’s large
internal buffer and

unpredictable caching

policy.

<H57>

P Annotations for Hint

Thus, we suggest an
annotation method that
allows users to send a
hint to an SSD, such as
latency determinism or

bufferability that this work

suggests.

Determinism

Bufferability

<b58>

Hint

CXAL-enabled CPU

SSD

CXL

Load/Store CXL transaction packet

DT: deterministic
BF: Bufferable

ND: Non-deterministic
NB: Non-bufferable

Proposed CXL

Ctrl.

/0O
command

 DRAM '

Hint

Then SSD
controller behaves
appropriately
based on which
hint is transferred.

Conclusion

We study how CXL can be applied to PCle storage to fill the
semantic gap between bytes and blocks by exploring:

1) Success in converting the block semantics to byte semantics over CXL
2) Speculate the performance with a CXL hardware prototype

3) Explore new opportunities to use the memory expander efficiently

hank "ou'

Contact Myoungsoo Jung (mj@cémelab org)

	Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express Link for Memory Expansion
	High-Level Summary
	슬라이드 번호 3
	PCIe Storage as Working Memory
	Benefits: Larger Memory
	Benefits: Larger Memory
	Conventional Attempts
	Commonality of Conventional Attempts
	Commonality of Conventional Attempts
	슬라이드 번호 10
	Limitations of Conventional Attempts
	Good Enough PCIe Bandwidth
	But, Non-Cacheable Access
	But, Non-Cacheable Access
	But, Non-Cacheable Access
	Advocation: CXL for Memory Expansion
	CXL: Multi Protocols
	CXL: Multi Protocols
	CXL: Multi Protocols
	Cacheable Access
	Cacheable Access
	Side-by-Side Comparison
	Side-by-Side Comparison
	슬라이드 번호 24
	Design #1: Device Type Consideration
	CXL Device: Mix & Match CXL Protocols
	CXL Device: Mix & Match CXL Protocols
	Best-Fit: Type 3 CXL Device
	Limits of Type 2 CXL Device
	Limits of Type 2 CXL Device
	Limits of Type 2 CXL Device
	Design #2: Enable CXL SSD (Type 3)
	At A Glance: CXL SSD & CXL-enabled CPU
	At A Glance: CXL SSD & CXL-enabled CPU
	At A Glance: CXL SSD & CXL-enabled CPU
	At A Glance: CXL SSD & CXL-enabled CPU
	Simple Modification is Enough
	Performance Projection
	Experimental Group
	Result Analysis
	Result Analysis
	Result Analysis
	슬라이드 번호 43
	Needs: Memory Pooling
	Guide #1: Resource Expansion
	#1-1: CXL Switch
	#1-1: CXL Switch
	#1-2: Multi CXL Switch
	Guide #2: Resource Pooling
	#2-1: Switch Virtualization
	#2-1: Switch Virtualization
	#2-2: Device Virtualization
	#2-2: Device Virtualization
	슬라이드 번호 54
	Needs: Latency & Persistence Control
	Unexpected Case #1: Internal Tasks
	Unexpected Case #2: Internal Buffer
	Annotations for Hint
	User Scenarios
	Representative Scenario: Database
	Representative Scenario: Database
	Representative Scenario: Database
	Representative Scenario: Database
	Conclusion
	슬라이드 번호 65

