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High-Level Summary

We propose two simple modules

Adjust the order of requests
to exploit the internal parallelism

Problem: It is hard to exploit the internal parallelism of SSDs
(Reason: ZNS does not provide abstraction required to manage the parallelism)

information 
related to the 

parallelism

#2: Interference-aware I/O scheduler

We analyze the problem of zoned namespaces (ZNS), by using two production ZNS SSDs

Get information which is required 
to exploit the internal parallelism

#1: Interference profiler
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1. Background – Zoned Namespaces
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• Zoned namespaces (ZNS): Emerging storage interface

• Divide logical address space into multiple zones

• In general, each zone is mapped to one or more flash blocks
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• Two constraints on each zones

• Constraint #1: Sequential write
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• Two constraints on each zones

• Constraint #1: Sequential write

• Constraint #2: Erase(reset)-before-write

What Is ZNS?
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What Is ZNS?
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Host-side FTL should manage

Zone-to-block mapping is sufficient
➢ DRAM requirement is reduced & SSD becomes cheaper

Zone Block

Application

Page Page

#1: Page-to-page mapping #2: Garbage collection
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What Is ZNS?

Zone 0 Zone 1 Zone n...
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ZNS 
SSD

Host

Zone-to-block mapping is sufficient
➢ DRAM requirement is reduced & SSD becomes cheaper

Zone Block

Application

Host-side FTL should manage
Page Page

#1: Page-to-page mapping #2: Garbage collection

Main concept: Let’s make SSDs lighter 
by exposing the block-level constraints to the host
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• No constraint on zone size

How Should Zones Be Configured?

** Above figure is different from
the configuration of the production ZNS SSDs that we used in this paper

Channel

Chip

zone 0
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zone 3

Small zone

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

Channel

Chip

Large zone
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Channel

Chip

zone 0

zone 1

zone 2

zone 3

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

Channel

Chip

Small zoneLarge zone

• No constraint on zone size

How Should Zones Be Configured?

➢ We advocate small zone devices

+) Higher degree of freedom for data placement

+) Less time required to mitigate 
valid data in a zone for the host-level GC
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2. Challenge
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Disadvantage of Small Zone Devices

• Sequential read w/ single process
• Used two production ZNS SSDs

• ZNS-large: ZNS SSD with large zones (2.18GB/zone)
• ZNS-small: ZNS SSD with small zones (96MB/zone)

** Both SSDs utilize the same flash package
** PCIe3.0 x4 (max. bandwidth = 3.94GB/s)

➢ Reason: Internal parallelism (especially, intra-zone parallelism)

Disadvantage:
They show much worse performance than large zone devices, when the request size is large
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Internal Parallelism in ZNS SSDs

Intra-zone parallelism

Zone

Inter-zone parallelism

Zone Zone Zone Zone
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Way to exploit the intra-zone parallelism
: Increase the request size

Intra-zone Parallelism

Able to get a high performance
by increasing the request size 

Unable to get a high performance
by increasing the request size 

zone X

...

...

Chip

Channel

Small zone
(Intra-zone parallelism ↓)

Channel

Chip

zone X zone X zone X zone X

zone X zone X zone X zone X

Large zone
(Intra-zone parallelism ↑)

0 41 5

2 63 7

8 129 13

10 1411 15

0 12 34 56 7

Request

0 1 ... 15

Sub-requests
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Internal Parallelism in ZNS SSDs

Intra-zone parallelism

Zone

Inter-zone parallelism

Zone Zone Zone Zone
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Inter-zone Parallelism

...

...

Channel

Chip

zone X

zone Y

Process A

Process B

01

01

Way to exploit the inter-zone parallelism
: Send requests to different zones at the same time
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Channel

Chip

zone X

zone Y

...

...

Inter-zone Parallelism

Process A

Process B
ZNS-large

ZNS-small (Interference level 0)

Way to exploit the inter-zone parallelism
: Send requests to different zones at the same time
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Channel

Chip

...

...

zone X

zone Z

Challenge: Inter-Zone Interference

Process A

Process B

ZNS-large

ZNS-small (Interference level 0)

01

01
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Process A

Process B

01

01

Channel

Chip

zone X

zone Z ...

...

Challenge: Inter-Zone Interference

2.84x

The host must be aware of the inter-zone interference, 
since it can cause a serious performance degradation

ZNS-large

ZNS-small (Interference level 0)

ZNS-small (Interference level 5)

ZNS-small (Interference level 6)

ZNS-small (Interference level 7)



<20>

...

...

Channel

Chip

Requirements to Prevent the Interference

zone X

zone Z

zone Y

ZNS SSD

Host

#1: The host must recognize 
the zone-to-zone relationship 
generating the interference 

#2: The host needs to schedule I/O requests 
appropriately, based on the information
(e..g., Prevent zone X and zone Z from being accessed simultaneously)

zone X zone Zzone Y

I/O requests
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Challenge: Not Enough Abstraction

zone X

zone Z ...

...
zone Y

ZNS SSD

Host

Problem:
ZNS does not provide enough abstraction 
about hardware configuration

Channel

Chip

zone X zone Zzone Y

I/O requests

?
(Unknown to the host)

The host cannot prevent the interference
since there is no information 
related to the interference/parallelism
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3. Solution
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Detect zone-to-zone relationships 
generating the interference

Interference profiler

Adjust the order of requests
to reduce the level of inter-zone interference

Interference-aware I/O Scheduler 

Overview

ZNS
SSD

zone X zone Y Interference X

Interference Ozone X zone Z

Interference ↓Interference ↑

Problem:
Not enough abstraction about hardware ➔ Cannot prevent performance degradation due to the interference



<24>

Interference Profiler – Main Idea

zone X zone Y

baseline zone target zone

read read

Channel

Chip

zone X

zone Y

...

...

High bandwidth
: No interference

Channel

Chip

zone X
zone Y ...

...

Low bandwidth
: Interference
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Interference Profiler

zone X zone Y

baseline zone target zone

read read

High bandwidth
: No interference

Low bandwidth
: Interference

Conflict group 0 zone 0 zone 9 zone 16 zone 25 ...

Conflict group 1 zone 1 zone 8 zone 17 zone 24 ...

...

** Conflict group: Set of zones interfering with each other

Low bandwidth: Interference
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Interference Profiler

Out: Zone-to-CG (Z2C) mapping table

In: List of zones to analyze

zone 0 zone Z...

Interference profiler

Set the 
threshold bandwidth

Initialize the first CG
with the first zone

zone ACG 0

Classify the remaining zones 
into conflict groups
Case 1: Add to the existing CG
Case 2: Create a new CG

CG

New
CGConflict group 0 zone 0 zone 9 zone 16 zone 25 ...

Conflict group 1 zone 1 zone 8 zone 17 zone 24 ...

...
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Interference Profiler - Results
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• Z2C mapping can vary based on the order in which zones are written

**Above patterns are repeated
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Interference Profiler - Results
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• Z2C mapping can vary based on the order in which zones are written

**Above patterns are repeated

We can exploit the paralleism by accessing zones from different CGs

Conflict group 0 zone 0 zone 9 zone 16 zone 25 ...

Conflict group 1 zone 1 zone 8 zone 17 zone 24 ...

No interference
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Interference-aware I/O Scheduler

Zone-to-CG (Z2C)
mapping table

zone CG

req

req CG

#1: Conflict group tagging

...

Per-core S/W queue

...

Per-core H/W queue

#2: Sorting
(High priority: CG having a lower 
number of outstanding requests)

#3: Update the number of 
outstanding requests per CG

Block layer

ZNS-aware 
filesystem

NVMe layer

ZNS SSD

Application

Goal: Schedule I/O requests coming from different CGs as many as possible
➢ Able to exploit the internal parallelism

** Analyzed by
the interference profiler

#
I/

O

CG

... ...
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4. Evaluation
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Evaluation Setting

Schedulers

• blk_mq
• Multi-queue I/O scheduler 

of Linux

• zns_mq
• Multi-queue I/O scheduler 

that utilizes our interference 
profiling information

Workloads

• RocksDB
• 1~16 zones / SST file

• Recommendation system
• 128 zones / embedding table
• Embedding table contains 

50M indices with 64 dimensions

Environments

• ZNS-small
• production ZNS SSD
• 96MB/zone
• TLC-based flash

• Intel Xeon CPU 
• 2.3GHz, 20cores, 40 vCPUs
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Evaluation Results - Bandwidth

• zns_mq improves the bandwidth of blk_mq by 1.98x, on average
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blk_mq

Recommendation system
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Evaluation Results – Tail Latency

Recommendation system
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• zns_mq shows narrower width of the distribution
: All I/O requests experience similar interference levels

• zns_mq exhibits 11x shorter three nine (99.9%) tail latency, on average
• zns_mq exhibits 2.2x shorter latency, on average
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• By using two production ZNS SSDs, we quantitively analyze 
the performance degradation due to the inter-zone interference

• We propose two simple modules to exploit the internal parallelism of ZNS SSDs

• Interference profiler

• Interference-aware I/O scheduler

• Our evaluation results show that 
our mechanism can improve the bandwidth and latency, significantly

Conclusion
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