
HotStorage’22

What You Can’t Forget:
Exploiting Parallelism for Zoned Namespaces

Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, Myoungsoo Jung

<2>

High-Level Summary

We propose two simple modules

Adjust the order of requests
to exploit the internal parallelism

Problem: It is hard to exploit the internal parallelism of SSDs
(Reason: ZNS does not provide abstraction required to manage the parallelism)

information
related to the

parallelism

#2: Interference-aware I/O scheduler

We analyze the problem of zoned namespaces (ZNS), by using two production ZNS SSDs

Get information which is required
to exploit the internal parallelism

#1: Interference profiler

<3>

1. Background – Zoned Namespaces

<4>

• Zoned namespaces (ZNS): Emerging storage interface

• Divide logical address space into multiple zones

• In general, each zone is mapped to one or more flash blocks

What Is ZNS?

Host

Zone 0 Zone 1 Zone n...

ZNS
SSD

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block ...

<5>

• Two constraints on each zones

• Constraint #1: Sequential write

What Is ZNS?

Host

Zone 0 Zone 1 Zone n...

ZNS
SSD

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block ...

<6>

• Two constraints on each zones

• Constraint #1: Sequential write

• Constraint #2: Erase(reset)-before-write

What Is ZNS?

Host

Zone 0 Zone 1 Zone n...

ZNS
SSD

Reset

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block ...

<7>

What Is ZNS?

Zone 0 Zone 1 Zone n...

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block ...

ZNS
SSD

Host

Host-side FTL should manage

Zone-to-block mapping is sufficient
➢ DRAM requirement is reduced & SSD becomes cheaper

Zone Block

Application

Page Page

#1: Page-to-page mapping #2: Garbage collection

<8>

What Is ZNS?

Zone 0 Zone 1 Zone n...

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block

Flash
block ...

ZNS
SSD

Host

Zone-to-block mapping is sufficient
➢ DRAM requirement is reduced & SSD becomes cheaper

Zone Block

Application

Host-side FTL should manage
Page Page

#1: Page-to-page mapping #2: Garbage collection

Main concept: Let’s make SSDs lighter
by exposing the block-level constraints to the host

<9>

• No constraint on zone size

How Should Zones Be Configured?

** Above figure is different from
the configuration of the production ZNS SSDs that we used in this paper

Channel

Chip

zone 0

zone 1

zone 2

zone 3

Small zone

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

Channel

Chip

Large zone

<10>

Channel

Chip

zone 0

zone 1

zone 2

zone 3

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

zone 0 zone 0 zone 0 zone 0

zone 1 zone 1 zone 1 zone 1

Channel

Chip

Small zoneLarge zone

• No constraint on zone size

How Should Zones Be Configured?

➢ We advocate small zone devices

+) Higher degree of freedom for data placement

+) Less time required to mitigate
valid data in a zone for the host-level GC

<11>

2. Challenge

<12>

Disadvantage of Small Zone Devices

• Sequential read w/ single process
• Used two production ZNS SSDs

• ZNS-large: ZNS SSD with large zones (2.18GB/zone)
• ZNS-small: ZNS SSD with small zones (96MB/zone)

** Both SSDs utilize the same flash package
** PCIe3.0 x4 (max. bandwidth = 3.94GB/s)

➢ Reason: Internal parallelism (especially, intra-zone parallelism)

Disadvantage:
They show much worse performance than large zone devices, when the request size is large

<13>

Internal Parallelism in ZNS SSDs

Intra-zone parallelism

Zone

Inter-zone parallelism

Zone Zone Zone Zone

<14>

Way to exploit the intra-zone parallelism
: Increase the request size

Intra-zone Parallelism

Able to get a high performance
by increasing the request size

Unable to get a high performance
by increasing the request size

zone X

...

...

Chip

Channel

Small zone
(Intra-zone parallelism ↓)

Channel

Chip

zone X zone X zone X zone X

zone X zone X zone X zone X

Large zone
(Intra-zone parallelism ↑)

0 41 5

2 63 7

8 129 13

10 1411 15

0 12 34 56 7

Request

0 1 ... 15

Sub-requests

<15>

Internal Parallelism in ZNS SSDs

Intra-zone parallelism

Zone

Inter-zone parallelism

Zone Zone Zone Zone

<16>

Inter-zone Parallelism

...

...

Channel

Chip

zone X

zone Y

Process A

Process B

01

01

Way to exploit the inter-zone parallelism
: Send requests to different zones at the same time

<17>

Channel

Chip

zone X

zone Y

...

...

Inter-zone Parallelism

Process A

Process B
ZNS-large

ZNS-small (Interference level 0)

Way to exploit the inter-zone parallelism
: Send requests to different zones at the same time

<18>

Channel

Chip

...

...

zone X

zone Z

Challenge: Inter-Zone Interference

Process A

Process B

ZNS-large

ZNS-small (Interference level 0)

01

01

<19>

Process A

Process B

01

01

Channel

Chip

zone X

zone Z ...

...

Challenge: Inter-Zone Interference

2.84x

The host must be aware of the inter-zone interference,
since it can cause a serious performance degradation

ZNS-large

ZNS-small (Interference level 0)

ZNS-small (Interference level 5)

ZNS-small (Interference level 6)

ZNS-small (Interference level 7)

<20>

...

...

Channel

Chip

Requirements to Prevent the Interference

zone X

zone Z

zone Y

ZNS SSD

Host

#1: The host must recognize
the zone-to-zone relationship
generating the interference

#2: The host needs to schedule I/O requests
appropriately, based on the information
(e..g., Prevent zone X and zone Z from being accessed simultaneously)

zone X zone Zzone Y

I/O requests

<21>

Challenge: Not Enough Abstraction

zone X

zone Z ...

...
zone Y

ZNS SSD

Host

Problem:
ZNS does not provide enough abstraction
about hardware configuration

Channel

Chip

zone X zone Zzone Y

I/O requests

?
(Unknown to the host)

The host cannot prevent the interference
since there is no information
related to the interference/parallelism

<22>

3. Solution

<23>

Detect zone-to-zone relationships
generating the interference

Interference profiler

Adjust the order of requests
to reduce the level of inter-zone interference

Interference-aware I/O Scheduler

Overview

ZNS
SSD

zone X zone Y Interference X

Interference Ozone X zone Z

Interference ↓Interference ↑

Problem:
Not enough abstraction about hardware ➔ Cannot prevent performance degradation due to the interference

<24>

Interference Profiler – Main Idea

zone X zone Y

baseline zone target zone

read read

Channel

Chip

zone X

zone Y

...

...

High bandwidth
: No interference

Channel

Chip

zone X
zone Y ...

...

Low bandwidth
: Interference

<25>

Interference Profiler

zone X zone Y

baseline zone target zone

read read

High bandwidth
: No interference

Low bandwidth
: Interference

Conflict group 0 zone 0 zone 9 zone 16 zone 25 ...

Conflict group 1 zone 1 zone 8 zone 17 zone 24 ...

...

** Conflict group: Set of zones interfering with each other

Low bandwidth: Interference

<26>

Interference Profiler

Out: Zone-to-CG (Z2C) mapping table

In: List of zones to analyze

zone 0 zone Z...

Interference profiler

Set the
threshold bandwidth

Initialize the first CG
with the first zone

zone ACG 0

Classify the remaining zones
into conflict groups
Case 1: Add to the existing CG
Case 2: Create a new CG

CG

New
CGConflict group 0 zone 0 zone 9 zone 16 zone 25 ...

Conflict group 1 zone 1 zone 8 zone 17 zone 24 ...

...

<27>

Interference Profiler - Results

Conflict group 0 1 2 3 4 5 6 7

Zone index[8:3]

Z
o

n
e

 i
n

d
e

x
[2

:0
]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1

3

5

7

Case #1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1

3

5

7

Zone index[8:3]

Z
o

n
e

 i
n

d
e

x
[2

:0
]

Case #2

...

• Z2C mapping can vary based on the order in which zones are written

**Above patterns are repeated

<28>

Interference Profiler - Results

Conflict group 0 1 2 3 4 5 6 7

Zone index[8:3]

Z
o

n
e

 i
n

d
e

x
[2

:0
]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1

3

5

7

Case #1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1

3

5

7

Zone index[8:3]

Z
o

n
e

 i
n

d
e

x
[2

:0
]

Case #2

...

• Z2C mapping can vary based on the order in which zones are written

**Above patterns are repeated

We can exploit the paralleism by accessing zones from different CGs

Conflict group 0 zone 0 zone 9 zone 16 zone 25 ...

Conflict group 1 zone 1 zone 8 zone 17 zone 24 ...

No interference

<29>

Interference-aware I/O Scheduler

Zone-to-CG (Z2C)
mapping table

zone CG

req

req CG

#1: Conflict group tagging

...

Per-core S/W queue

...

Per-core H/W queue

#2: Sorting
(High priority: CG having a lower
number of outstanding requests)

#3: Update the number of
outstanding requests per CG

Block layer

ZNS-aware
filesystem

NVMe layer

ZNS SSD

Application

Goal: Schedule I/O requests coming from different CGs as many as possible
➢ Able to exploit the internal parallelism

** Analyzed by
the interference profiler

#
I/

O

CG

... ...

<30>

4. Evaluation

<31>

Evaluation Setting

Schedulers

• blk_mq
• Multi-queue I/O scheduler

of Linux

• zns_mq
• Multi-queue I/O scheduler

that utilizes our interference
profiling information

Workloads

• RocksDB
• 1~16 zones / SST file

• Recommendation system
• 128 zones / embedding table
• Embedding table contains

50M indices with 64 dimensions

Environments

• ZNS-small
• production ZNS SSD
• 96MB/zone
• TLC-based flash

• Intel Xeon CPU
• 2.3GHz, 20cores, 40 vCPUs

<32>

Evaluation Results - Bandwidth

• zns_mq improves the bandwidth of blk_mq by 1.98x, on average

zns_mq

blk_mq

Recommendation system

1 2 4 8 16 32
Processes

B
a
n
d
w

id
th

(G
B

/s
) 4

3

2

1

0

zones

1

RocksDB

B
a

n
d

w
id

th
(G

B
/s

) 4

3

2

1

0

1 2 4 8 16 32
Processes

8

16

<33>

Evaluation Results – Tail Latency

Recommendation system

100

80

60

40

20

0

1 10 100
Latency (ms)

P
ro

b
a

b
ili

ty
 (

%
)

RocksDB

P
ro

b
a

b
ili

ty
 (

%
) 100

80

60

40

20

0

1 10 100
Latency (ms)

zones

1

8

16

zns_mq

blk_mq

• zns_mq shows narrower width of the distribution
: All I/O requests experience similar interference levels

• zns_mq exhibits 11x shorter three nine (99.9%) tail latency, on average
• zns_mq exhibits 2.2x shorter latency, on average

<34>

• By using two production ZNS SSDs, we quantitively analyze
the performance degradation due to the inter-zone interference

• We propose two simple modules to exploit the internal parallelism of ZNS SSDs

• Interference profiler

• Interference-aware I/O scheduler

• Our evaluation results show that
our mechanism can improve the bandwidth and latency, significantly

Conclusion

<35>

