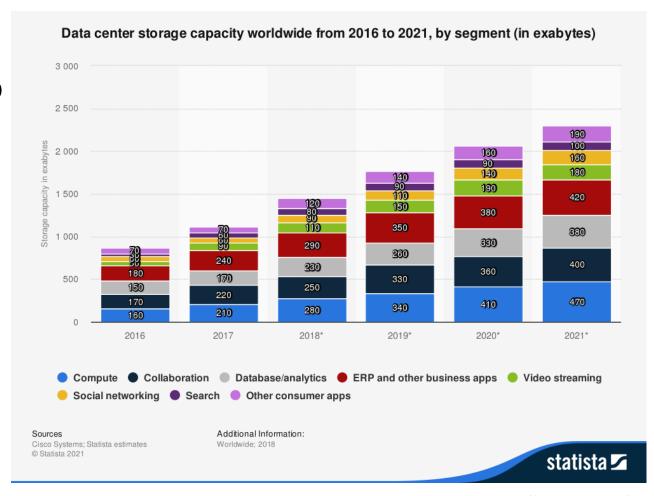
A Principled Approach for Selecting Block I/O Traces

Omkar Desai (Syracuse University)

Seungmin Shin (Soongsil University)

Eunji Lee (Soongsil University)

Bryan S. Kim (Syracuse University)



Overview

- 1. I/O traces in storage systems
- 2. System design
- 3. Evaluation methodology & results
- 4. Conclusion

Why are traces important

- Our storage stack was imagined and built more than 25 years ago
- Changing dynamics of data requires a reimagination of the storage stack
- Traces are important to understand this and adapt systems to cater to new needs

https://www.statista.com/

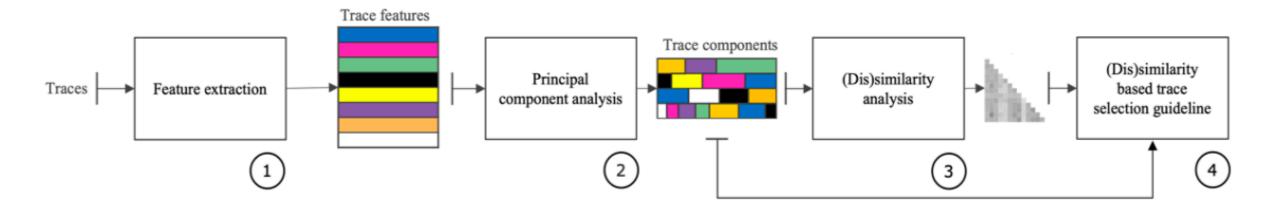
Traces

 Block I/O traces – a record of a sequence of I/O commands issued to a storage system.

- Typical fields:
 - Timestamp
 - Operation
 - I/O size
 - Address
- Use cases:
 - Understand behavior of storage systems in production
 - Evaluate and build better storage systems

Timestamp	Operation	I/O size	Address
0	read	1024	306

Challenges with block I/O traces


- Large in size
- Increasing number of traces
- Absence of inherent (dis)similarities with other traces
- Difficulty in distribution and replay

Trace	# of files	# of I/Os	Total time
YCSB RocksDB	27	352 M	0.4 Days
Virtual Desktop	2694	4.3 B	103.3 Days
Nexus 5	31	410 K	23.3 Mins
Slacker	57	274.2 K	13.9 Mins
MS Prod	297	1 B	120 Days
MS Ent	116	2.6 B	120 Days
MSR C	36	434 M	8 Days
Total	3258	8.7 B	441 Days

Overview

- 1. I/O traces in storage systems
- 2. System design
- 3. Evaluation methodology & results
- 4. Conclusion

IOTap: I/O trace analysis and profiling

- Extracts 253 features from each trace
- Reduces its dimensionality through PCA (Principal Component Analysis)
- Computes the (dis)similarity between traces based on their distance in the PC dimension
- Sets forth a guideline for selecting traces based on clustering similar traces

Conclusion

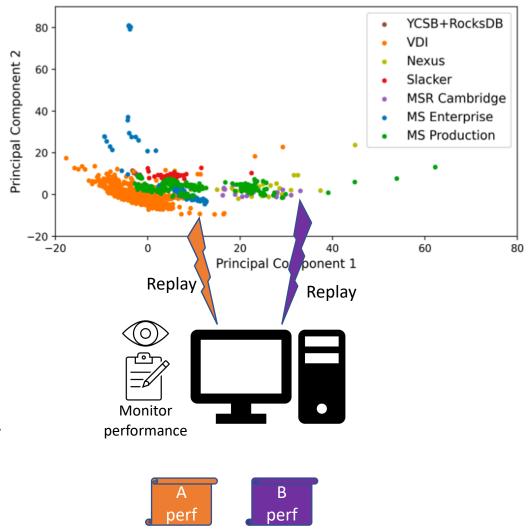
Feature selection

- Incorporate all major indicators impacting I/O performance
- Attributes extracted for reads, writes and combined operations
- Attributes at various chunking intervals capture changing dynamics of workloads

Attribute group	Description	Number of attributes	Number of features
I/O type	Read-write ratio, I/O change probabilities	5	55
I/O size	I/O size, data transfer rate	6	66
Inter-arrival distance	Root-mean-square of distances	3	33
Skew	Portion of data transferred in top most accessed blocks	9	99
Total		23	253

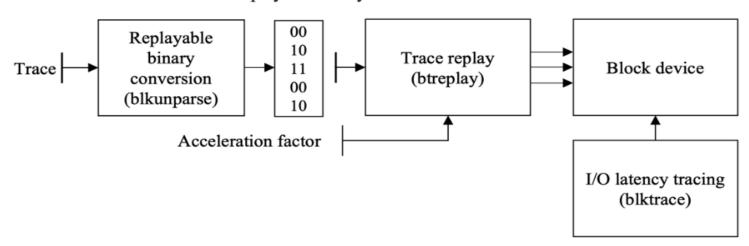
Identifying the important attributes

- Identified the top features used by PCA for dimensionality reduction
- RMS of distance between reads has the highest contribution
- Randomness in accesses and the probability of change in I/O type are discerning attributes in our analysis


Attribute	Features	Contribution (%)	
RMS of distance between consecutive reads (<i>RRMS</i>)	$RRMS_{avg}^{entire}$	5.3	
Bytes read per second (<i>BRPS</i>)	$\mathit{BRPS}^{1min}_{q1}$	4.7	
Probability of write after read I/O (<i>WAR</i>)	WAR_{q2}^{1sec}	3.35	
Portion of data transferred in top 10% hot blocks (10HOT)	$10HOT_{q1}^{1min}$	2.76	
Probability of read after write I/O (<i>RAW</i>)	RAW_{max}^{1sec}	2.54	

Overview

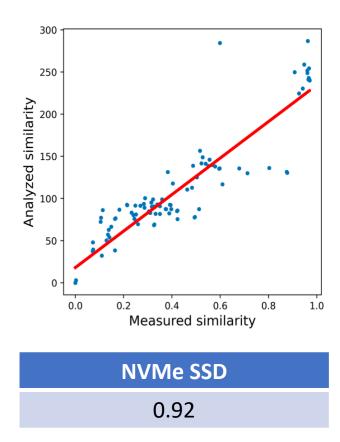
- 1. I/O traces in storage systems
- 2. System design
- 3. Evaluation methodology & results
- 4. Conclusion


Evaluation methodology

- Hypothesis: Traces that are close together when analyzed using IOTap will have a similar performance compared to traces that are further apart.
- Testing of hypothesis: Monitor performance of a device (SSD) while subjecting it to the same workload.
- Quantification: Measure similarity in performance distribution using Kolmogorov-Smirnov (KS) test

Experimental setup

Replayable binary

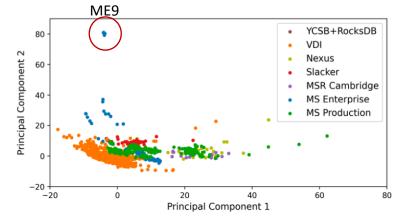

- 1. Blkunparse takes a record of block I/O activity and converts it into a replayable binary
 - Blkunparse is open sourced and available for use at github.com/swiftomkar/IOTap
- 2. Btreplay is used to replay the trace with an acceleration factor
 - Accel. factor is is determined based on the target device's performance profile
- Blktrace is used to trace the performance of the device under replay load and latencies are interpreted from the traced data

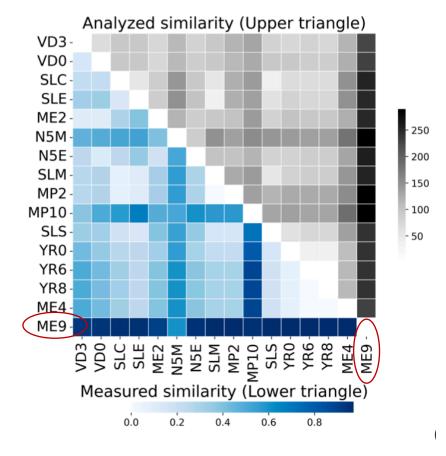
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/

Conclusion

Results

- Figure alongside show the accuracy of our work
- The line in red shows the regression fit
- Experiments were conducted on SSDs
- In future HDDs, RAID arrays and more will be evaluated




Fine grain analysis

- Similarity matrices show the accuracy of analysis with every evaluated trace
- A greater degree of diagonal mirroring means a higher correlation between the analytical and empirical results.

 A simple look at ME9 shows that measured and analyzed results are

consistent

(a) Similarity matrix.

Experimental results

Trace sampling

- Our trace sampling module clusters similar traces together
- A representative trace is chosen from each cluster as part of a sampled set
- An example of a set 5 traces cover at least 80% of analyzed I/O spectrum

Trace file	Read Ratio	Bandwidth	Avg. I/O size
VDI 2016031413-LUN3	0.86	27.4MB/s	32.9KB
VDI 2016031415-LUN2	0.59	5.5MB/s	18.6KB
MS Production Display Ads 6:11 AM	0.53	835KB/s	75.4KB
MS Production Display Ads 7:06 AM	0.92	600KB/s	30.5KB
MS Enterprise TPCC 10:02 AM	0.62	1.3GB/s	8.7KB
Coverage (1-KS)	0.85	0.80	0.80

Conclusion

- 2 seemingly different traces may have the same effect on a storage device
- IOTap is able to analytically compute the dis-similarities between different traces
- It can be used to provide a selection guideline

IOTap's accuracy is 92%

Q & A

odesai@syr.edu