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ABSTRACT
The Log-Structured Merge (LSM) tree is considered well-
suited to zoned namespace (ZNS) storage devices since the
write requests to LSM-tree is sequential. However, zones can
be partially invalidated and be fragmented during LSM-tree
compaction. The partially-invalid zones cannot be utilized
and thus space amplification becomes significant. To reclaim
the invalid space, host-managed garbage collection (GC) is
required, which increases the write amplification of ZNS stor-
age and degrades I/O performance. We introduce a lifetime-
leveling compaction (LL-compaction) tailored for ZNS SSD,
which can alleviate space amplification without GC by mak-
ing the sorted string tables in a zone have similar lifetimes. In
our experiments using LevelDB, the LL-compaction achieved
1.7x better performance by removing GCs.
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1 INTRODUCTION
Zoned Namespace Interface. A new NVMe storage in-
terface, Zoned NameSpace (ZNS) [19], provides the logical
address space divided into fixed-sized zones. The ZNS stor-
age interface was first introduced for Shingled Magnetic
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Recording (SMR) [1] HDDs, and it was recently adopted by
flash memory Solid-State Drives (SSDs). Considering the
sequential-only write constraint of these storage media, ZNS
specifies that each zone must be written sequentially and
can be reused after reset operation. For ZNS SSD, a zone is
generally mapped to multiple flash erase blocks in different
flash chips to utilize flash chip-level parallelism. Because
each zone is sequentially written, the ZNS SSD can maintain
a zone-level logical-to-physical address mapping internally
(i.e., mapping between a zone and flash blocks). The coarse-
grained mapping requires a small internal DRAM of SSD.
Because the mapped flash blocks of a zone will be fully invali-
dated at zone reset, the SSD-internal garbage collection is not
required, and the write amplification by garbage collection
can also be eliminated.
LSM-tree KV-Store. The Log-Structured Merge (LSM)

tree [16] is considered well-suited to ZNS since the write re-
quests to LSM-tree is sequential. LSM-trees have widely been
used in many Key-Value (KV) stores, including BigTable [5],
Cassandra [14], LevelDB [10], and RocksDB [9]. LSM-tree is
a leveled data structure and each level is composed of several
sorted files called Sorted String Tables (SSTs). Each SST has
key-value pairs in a sorted form. The first level (𝐿0) SSTs
are directly flushed from in-memory memtable. The SSTs of
the following levels (𝐿1, · · · , 𝐿𝑛) are generated by LSM-tree
compactions, which migrate valid key-value pairs from an
upper level to its next level. SSTs in the same level have non-
overlapping key ranges each other at all levels except 𝐿0. All
levels have thresholds to limit the count or capacity of SSTs
in one level to eliminate invalid key-value items for reducing
read amplification and space amplification. If the total size of
SSTs in a level (𝐿𝑖 ) exceeds the threshold for the level, an SST
in 𝐿𝑖 is selected for compaction, and it is sort-merged with
those in the next level (𝐿𝑖+1) whose key ranges overlap with
the key range of the selected SST in 𝐿𝑖 . By the compaction,
new merged SSTs are created in 𝐿𝑖+1. Generally, there is a
maximum threshold on SST size (e.g., 4 MB). Therefore, if
the capacity of an SST is beyond the threshold while writing
key-value items in the file, the SST is closed and a new SST
is created. Finally, the old SSTs in 𝐿𝑖 and 𝐿𝑖+1 are deleted.
Space Amplification. We need to discuss whether the

current LSM-tree compaction is suitable for ZNS. Generally,
the compaction costs become larger for larger SSTs, as the
SSTs chosen for compaction are read, reordered and rewrit-
ten entirely. In addition, the memory space for memtables

100

https://doi.org/10.475/1234.5678
https://doi.org/10.475/1234.5678


HotStorage’22, June 27-28, 2022, virtual conference J. Jung and D. Shin

also becomes larger. Therefore, we assume that the zone size
(a multiple of flash erase block size) is large enough to store
multiple SST files at a zone. During SST compaction, each
zone can be filled sequentially with new created SSTs. How-
ever, the zones with deleted SSTs can be partially invalidated
and be fragmented. Since a zone can be reused after all its
SSTs are deleted, the invalid space of partially-invalid zones
cannot be utilized, and thus space amplification becomes
significant. To reclaim the invalid space of a zone, all valid
SSTs in the zone must be moved to other zones by host-
managed garbage collection (GC), which increases the write
amplification of ZNS storage and degrades I/O performance.

Partially-invalid zones result from the mismatch between
thewrite order and the deletion order of SSTs in a zone. There
are two reasons for the mismatch. First, SSTs of different
levels can be mixed in one zone. Since a compaction process
invalidates the SSTs only in the involving two adjacent levels,
the SSTs of other levels will remain after the compaction.
This problem can be solved simply by allocating dedicated
zones for each level, as proposed in GearDB [20].

Second, the current LSM-tree compaction algorithm uses
an upper-level driven compaction, where a target SST is
first selected from the upper level, and then its key-range-
overlapping SSTs are selected from the lower level. Assuming
that each zone has the SSTs of only a single level, the 𝐿𝑖-to-
𝐿𝑖+1 compaction can invalidate the SSTs of 𝐿𝑖 sequentially
within each zone by selecting SSTs in the order of write. This
is already supported by the current LevelDB implementation,
whose compaction algorithm chooses the SSTs of the upper
level in the order of key range. However, the deletion order
of SSTs in 𝐿𝑖+1 cannot be controllable. For example, some
SSTs of 𝐿𝑖+1 will be skipped during compaction if no SST
of 𝐿𝑖 overlaps with them in key range (long-lived SSTs).
In addition, after an SST of 𝐿𝑖+1 is created by the 𝑗-th 𝐿𝑖-
to-𝐿𝑖+1 compaction, it can be immediately deleted by the
( 𝑗 + 1)-th compaction, if the SST is selected as an key-range-
overlapping SST at the compaction (short-lived SSTs).

We measured actual space consumption by long-lived and
short-lived SSTs. We ran LevelDB using the YCSB [8] bench-
mark (zipfian constant = 0.99), and the zone size was 64MB.
The workload wrote 16.5GB data in total, so 264 zones were
used if no space amplification occurred. However, the num-
ber of zones actually allocated were 348. In our profiling, 81
zones (31% of allocated zones) were additionally allocated
due to holes caused by the short-lived SSTs and 3 zones
were occupied by long-lived SSTs. Consequently, 31.8% more
space was used by short-lived and long-lived SSTs.
Lifetime-Leveling Compaction. To resolve the space

and write amplification problems of LSM-tree on ZNS
storage, we propose a lifetime-leveling compaction (LL-
compaction) algorithm tailored for ZNS SSD, which makes
the SSTs in each zone have similar lifetimes. First, even when

there are no corresponding key-range-overlapping SSTs in
the upper level for an SST in the lower level, the SST is also
chosen for compaction in the LL-compaction if the com-
paction pointer (CP) must pass the key range of the SST. The
CP of 𝐿𝑖 points to the start key location of an SST in 𝐿𝑖 to
be selected at the next 𝐿𝑖-to-𝐿𝑖+1 compaction, and it moves
forward after each compaction in the round robin policy.
Therefore, the long-lived SSTs can be eliminated. Second, the
LL-compaction stores short-lived SSTs at special separate
zones, called T-Zone, to prevent them from being mixed with
normal SSTs within a zone. In particular, the LL-compaction
minimizes the size of each short-lived SST by making its start
key range is equal to the next CP. Then, the read and rewrite
costs for short-lived SSTs can be minimized. As a result, the
LL-compaction writes and invalidates SSTs sequentially in
each zone and thus eliminates the necessity of zone GCs.
The LL-compaction may increase or decrease the LSM-

tree compaction cost compared to the normal compaction.
The technique to avoid long-lived SSTs can increase the
compaction cost, whereas the techniques tominimize the size
of a short-lived SST can decrease the cost. In our experiments,
we observed that most of the SSTs in each level have the
corresponding key-range-overlapping SSTs in the adjacent
levels. Therefore, the amount of long-lived SSTs is generally
small. On the contrary, the amount of duplicate compactions
for short-lived SSTs is significant in the normal compaction.
Consequently, the LL-compaction has more benefit than cost.
To evaluate the proposed compaction algorithm, we im-

plemented LL-compaction at LevelDB and experimented the
compaction performance at a real ZNS SSD. The experiments
showed that the LL-compaction can mitigate space amplifi-
cation by about 30% and can show 1.7x better performance
by avoiding zone GCs.

2 RELATEDWORK
Host-Managed Data Placement. An SSD is composed of
many flash chips, each of which consists of many flash blocks.
Since the GC cost of SSD is determined by the lifetime simi-
larity of data blocks in each flash block, the lifetime-aware
data placement is important to reduce the GC cost. How-
ever, first-generation SSDs followed the traditional storage
interface for compatibility although their internal structures
were quite different with those of hard disk drives. The host
cannot control the data placement within SSD, and the SSD
cannot receive any hints from the host, which can be used
to determine the optimal data placement.

To resolve this problem, second-generation SSDs provide
an extended interface to allow the host to control data place-
ment directly or indirectly. For example, the open-channel
SSD [2, 4] exposes the hardware geometry of SSD such as
flash channels/chips/blocks to the host. The multi-streamed
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SSD [12] receives the stream ID along with a write request,
and reduces write amplification by separating different-
lifetime streams into different flash blocks. For example, SSTs
in different levels of LSM-tree can be separated to indepen-
dent streams. ZNS [15, 19] provides a high-level abstraction
called zone, which can be written only sequentially and can-
not be overwritten before reset. Although the constraint
facilitates low-cost SSDs such as DRAM-less and GC-less
SSDs, the host must undertake the host-level GC. To reduce
the host-level GC overhead, the recently-proposed new ZNS
interface, called ZNS+ [11], supports internal copy and sparse
sequential write operations.
KV-Store for ZNS. SMRDB [17] is an SMR-friendly KV-

store, which enlarges the SST to the size equivalent to an SMR
band (zone) size (e.g., 80 MB) to prevent overwriting a band.
SMRDB brings severe compaction latency due to the large
data volume involved in each compaction. GearDB [20] is
a GC-free KV-store designed for host-managed SMR drives.
To eliminate GC, which migrates live SSTs from partially
invalidated zones, GearDB proposed a gear compaction algo-
rithm. By descending compaction level by level if the newly
generated data overlaps the compaction window of the next
level, zones can be reused without GC. However, the gear
compaction invokes latency and space spikes by long com-
pactions. ZenFS [3, 7] is a storage backend for RocksDB,
which allows control of data placement through zones. ZenFS
assumes that the zone size is smaller than the SST size,
whereas we target large zone systems. Therefore, ZenFS
does not consider the space amplification by partially invalid
zones and does not provide GC for reclaiming invalid space.

3 ZNS-AWARE LSM-TREE COMPACTION
3.1 Motivation
Traditional LSM-tree Compaction. The traditional upper-
level compaction algorithm is as follows:

(1) Determine the level 𝐿𝑖 for compaction based on score.
(2) Select an SST 𝑇 𝑖

𝑗 pointed by CP from 𝐿𝑖 and initial-
ize the set of SSTs to be merged (𝑀) and the com-
paction window (𝑊 ) as follows: 𝑀 = {𝑇 𝑖

𝑗 }, 𝑊 =

[𝜅𝑠 (𝑇 𝑖
𝑗 ), 𝜅𝑒 (𝑇 𝑖

𝑗 )] (𝜅𝑠 (·) and𝜅𝑒 (·) represent the start key
location and the end key location of an SST or a com-
paction window, respectively.)

(3) For each SST𝑇 𝑖+1
𝑘

in 𝐿𝑖+1 where 𝜅𝑠 (𝑇 𝑖+1
𝑘

) ≤ 𝜅𝑒 (𝑊 ) and
𝜅𝑠 (𝑊 ) ≤ 𝜅𝑒 (𝑇 𝑖+1

𝑘
), insert 𝑇 𝑖+1

𝑘
to𝑀 , and expand𝑊 as

follows:
• 𝜅𝑠 (𝑊 ) = 𝜅𝑠 (𝑇 𝑖+1

𝑘
) if 𝜅𝑠 (𝑇 𝑖+1

𝑘
) < 𝜅𝑠 (𝑊 )

• 𝜅𝑒 (𝑊 ) = 𝜅𝑒 (𝑇 𝑖+1
𝑘

) if 𝜅𝑒 (𝑊 ) < 𝜅𝑒 (𝑇 𝑖+1
𝑘

)
(4) Insert any SST in 𝐿𝑖 into 𝑀 if its key range is fully

included in𝑊 .
(5) Create new SSTs in 𝐿𝑖+1 by merging all the SSTs in𝑀 .
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Figure 1: Example of long-lived SST.
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Figure 2: Example of short-lived SST.

(6) Delete all the merged SSTs.
(7) Change the CP of 𝐿𝑖 (𝐶𝑃𝑖 ) to the start key location of

the SST in 𝐿𝑖 which is in the next order of compaction.
Long-lived SST. Fig.1 shows an example of LSM-tree

compaction and the data change of zones by the compaction.
Before the compaction, SST1 and SST2 in the upper level (𝐿𝑖 )
are located at Zone9 while the SSTs of the lower level (𝐿𝑖+1)
are located at Zone10. The 𝐿𝑖 -to-𝐿𝑖+1 compaction first selects
SST1 from 𝐿𝑖 , and then selects SST3 and SST4 from 𝐿𝑖+1,
which overlap with SST1 in key range. By the compaction,
the new merged SSTs (SST8, SST9, SST10) are created in 𝐿𝑖+1,
and they are sequentially written at Zone11. The old SSTs of
𝐿𝑖+1, SST3 and SST4, are invalidated in Zone10. By the next
compaction for the same level, the new merged SSTs (SST11,
SST12, SST13) are written at Zone11 and Zone12, and the
old SSTs of 𝐿𝑖+1 in Zone10 (SST6 and SST7) are invalidated.
SST5 is not involved in the compactions because there is no
SST in 𝐿𝑖 whose key range overlaps with the key range of
SST5. As a result, although Zone10 has a large invalid space,
it cannot be reset for reuse owing to only one valid SST, SST5,
which will live until 𝐶𝑃𝑖 or 𝐶𝑃𝑖+1 passes its key range again.
Such long-lived SSTs increase space amplification.
Short-lived SST. Fig.2 shows another example of LSM-

tree compaction. The 𝐿𝑖 -to-𝐿𝑖+1 compaction first selects key-
range-overlapping SSTs (SST1, SST3, SST4) and creates the
new merged SSTs (SST6, SST7, SST8), which are written at
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Zone11. By the next compaction for the same level, SST2,
SST8, and SST5 are merged into SST9, SST10, and SST11.
SST8 is deleted by the second compaction just after it is cre-
ated by the first compaction. This is because the compaction
windows of the first compaction and the second compaction
overlap. The lifetime of SST8 is short andmakes a hole within
Zone11, which cannot be reused until all the SSTs of 𝐿𝑖+1 are
deleted by the next compactions. Such short-lived SSTs in-
crease not only space amplification but also write traffic
because their key-value items are written twice.
Space Amplification and Write Amplification. The

space amplification of the LSM-tree compaction can be miti-
gated by zone GC, which migrates valid SSTs in a partially
invalid zone to other zones to reclaim the invalid space of
the zone. For the example in Fig. 1, if SST5 is moved from
Zone10 to Zone12, Zone10 can be reused and the space am-
plification can be mitigated. However, there is a trade-off
between space amplification and write amplification. The
SST migration by GC increases the write amplification, and
thus the overall performance will be degraded. We need a
ZNS-aware compaction algorithm which can improve zone
utilization without GC.

3.2 Lifetime-Leveling Compaction
Our LL-compaction algorithm is based on the following prin-
ciples: (1) It allocates dedicated zones for each level since
different levels have different lifetime SSTs.
(2) To avoid long-lived SSTs, each compaction must in-

volve all the lower-level SSTs located between the current
CP and the next CP. For example, in Fig. 1, SST5 needs to
be merged along with SST1, SST3, and SST4 during the first
compaction, because 𝐶𝑃𝑖 is changed to 𝜅𝑠 (SST2) after the
compaction bypassing the key range of SST5.
(3) Short-lived SSTs are separated from normal SSTs and

the size of a short-lived SST is minimized. In Fig. 3, the first
compaction driven by SST1 creates four new SSTs in 𝐿𝑖+1.
The last two SSTs, SST10 and SST11, are divided by the next
𝐶𝑃𝑖 . Even though the capacity of SST10 is lower than the
capacity threshold of an SST, the SST is closed before the
next 𝐶𝑃𝑖 , and another SST is created starting from the key
location of the CP. Only the latter will be involved in the next
compaction driven by SST2. Without such an SST split, the
key range of SST10 will be included in the next compaction
window. Since SST11 is a short-lived SST, it is written at
T-Zone instead of Zone10. Then, the short-lived SST can be
separated from the normal SSTs in Zone10. T-Zonewill have
only short-lived SSTs, and thus it can be easily reclaimed.

(4) While creating SSTs in 𝐿𝑖+1, the key range of a created
SST cannot include𝐶𝑃𝑖+1 in the middle. If this is not guaran-
teed, 𝐶𝑃𝑖+1 can be changed to point to the start location of
an SST because a compaction cannot be performed starting
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Figure 3: SST Split

from a middle key location of an SST. If 𝐶𝑃𝑖+1 is changed by
the 𝐿𝑖 -to-𝐿𝑖+1 compaction, the sequentiality of SST selection
in the 𝐿𝑖+1-to-𝐿𝑖+2 compaction can be broken. In Fig. 3,𝐶𝑃𝑖+1
points to SST5. The second compaction driven by SST2 cre-
ates three SSTs in 𝐿𝑖+1. The first SST (SST12) is closed before
𝐶𝑃𝑖+1, and the key range of the following SST (SST13) starts
from 𝐶𝑃𝑖+1. Then, we don’t need to change 𝐶𝑃𝑖+1.
Based on the principles, we modified the original com-

paction algorithm in §3.1 by adding sub-steps in the steps of
(3) and (5) as follows:

• (3)-1Compactionwindow expansion for principle
(2): for each SST𝑇 𝑖+1

𝑘
in 𝐿𝑖+1 where 𝜅𝑒 (𝑊 ) < 𝜅𝑠 (𝑇 𝑖+1

𝑘
)

and 𝑇 𝑖+1
𝑘

has no key-range-overlapping SSTs in 𝐿𝑖 , in-
sert 𝑇 𝑖+1

𝑘
to𝑀 and expand the compaction window𝑊

s.t. 𝜅𝑒 (𝑊 ) = 𝜅𝑒 (𝑇 𝑖+1
𝑘

)
• (5)-1 SST Split for principle (3): if the key range
of a created SST should pass the next 𝐶𝑃𝑖 , close the
SST before the next𝐶𝑃𝑖 and write following key-value
items at another new SST file, and write only the latter
at T-Zone

• (5)-2 SST Split for principle (4): if the key range of
a new created SST should pass 𝐶𝑃𝑖+1, divide the new
SST in two by 𝐶𝑃𝑖+1

Instead of allocating a zone for T-Zone, we can use a mem-
ory space since the SSTs in T-Zone will be immediately
deleted. Instead, the old SSTs with the key-value pairs of
a short-lived SST must be deleted after the short-lived SST
is merged into other normal SSTs.

4 EXPERIMENTS
For evaluation, we used LevelDB 1.19. We implemented the
host-managed GC, which is triggered when the number of
free zones becomes one and is halted when more than two
free zones are obtained. The GC algorithm uses the greedy
policy, which chooses the zone with the lowest copy cost
as a victim. We also implemented the level separation tech-
nique, which allocates dedicate zones for each level. We
implemented our own ZNS storage system using Cosmos+
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openSSD [13]. The zone size is 64 MB, and the SST size is 4
MB. The ZNS storage is accessed via our user-level LSM-tree
management layer, which is composed of the libzbd [6] for
accessing ZNS storage interface, a zone management layer
for zone GC and level-to-zone mapping, and an 1.5 GB of
memory cache for storing recently-accessed SSTs. The host
computer system was equipped with 4 GHz quad-core Intel
i7-4790k CPU and 16 GB DDR4 memory.

We first evaluated the space amplifications under five dif-
ferent compaction techniques, BL, GC, LS, Gear, and LL. BL
and GC mean the GC-disabled original LevelDB and the GC-
enabled version, respectively. LS uses the level separation
technique in addition to GC. Gear and LL use GC-less com-
paction algorithms; the first is from GearDB [20] and the sec-
ond is our LL-compaction. LL uses the original compaction
algorithm at the 𝐿0-to-𝐿1 compaction since the SSTs in 𝐿0
have overlapping key ranges. Theworkload is the fill-random
benchmark of db_bench. The key size is 16 B, and the value
size is 512 B. The total 27 GB of data were written by the
workload. The storage space was limited to 29 GB to invoke
GCs at the experiments of GC, LS, and LL. In the experiment
of Gear, which required more zone space owing to the space
spike problem of the gear compaction, 31 GB was allocated.
Fig. 4(a) shows the distribution of zone utilization. The

x-axis represents the zone ID sorted by utilization. BL con-
sumed 624 zones and about 200 zones had a utilization lower
than 60% owing to partially-invalid zones. The space ampli-
fication can be mitigated by zone GC, which migrates valid
SSTs in a zone to other zone to reclaim the invalid space of
the zone. By enabling GC, the number of allocated zones
was reduced to 463, and most zones had a utilization higher
than 80%. From the result, we can know that the zone GC
is essential to reduce space amplification. LS improved uti-
lization slightly compared to GC. The utilization at LL was
higher than 90% at most zones (30% increase over BL).

There is a trade-off between space amplification and write
amplification. Fig. 4(b) shows the write performance change.
As the number of written key-value items increased, the
write performance degraded owing to LSM-tree compaction
overhead. When GC was enabled, the performance degraded
more significantly. Gear showed a similarly slow perfor-
mance as GC. In addition, it showed a significant fluctuation
on performance, because the gear compaction process pro-
ceeds recursively level by level. Fig. 4(c) compares the overall
performances of different algorithms. LL achieved about 1.7x
better performance than GC, and the improved performance
was similar to that of BL, which has no GC overhead. Accord-
ing to GearDB [20], the gear compaction showed a better
performance than the GC-enabled compaction at an SMR
device. However, Gear and GC showed similar performances
at our ZNS SSD, which has no seek time overhead unlike
SMR drives. Fig. 4(d) shows the breakdown of the total write
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Figure 4: Fill-random workload
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Figure 5: YCSB workload

traffic on storage. LL reduced the GC cost and the compaction
cost compared to GC and Gear, respectively. Although Gear
eliminates the GC cost, it shows a significant compaction
overhead owing to its recursive compaction algorithm.
Fig. 5(a) shows the performance comparison result for

the YCSB [8] workload (zipfian constant = 0.99, key = 16
B, value = 512 B). The total 75 GB of data were written by
the workload. The storage space was limited to 78 GB to
invoke GCs. Gear, which required too much space for its
gear compaction, was not examined for the YCSB workload.

LL showed 22-65% performance improvements compared
to GC. Fig. 5(b) shows the performance change while exe-
cuting the load scenario of YCSB. Since the workload has
an access locality, there is a performance fluctuation while
running compactions. This is because the number of SSTs
involved in a compaction varies.
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5 CONCLUSION & DISCUSSION
Reducing space and write amplifications is a primary object
in designing LSM-tree key-value stores. We revealed the cur-
rent LSM-tree compaction can suffer from space and write
amplifications at ZNS SSD owing to its lifetime-unaware al-
gorithm. Our lifetime-leveling compaction can reduce space
amplification without invoking zone garbage collections.
Under the LL-compaction, many small SST files can be

created owing to its SST split policy. According to our eval-
uation, the number of files was increased by 9% at LL-
compaction. However, the additional indexing overhead by
the increased number of SST files was negligible. When ex-
ecuting Get operations, the metadata search overhead ac-
counted for only 0.6% of the total execution time, and most
of the overhead resulted from SSD access time. Therefore,
the execution time increase was only 0.005%.
When an SST in the upper level has no corresponding

key-range-overlapping SSTs in the lower level, the original
compaction utilizes trivial move, which changes only the
index information without rewriting key-value items. How-
ever, the LL-compaction cannot use trivial move because
each level has its dedicated zones. GearDB [20], where each
zone can serve only SSTs from one level, also has the same
problem. However, the level separation has a higher benefit
than the cost, as shown in experiments. In addition, we will
be able to take advantage of simple copy [11] of ZNS, through
which the host can order the SSD to copy data internally.

The LL-compaction cannot use a priority-driven SST selec-
tion algorithm. For example, RocksDB [9] considers the age,
the overlapping key range, and the number of deleted items
when selecting a victim SST to improve read performance or
reduce compaction cost and space amplification [18]. How-
ever, the priority-driven policy will invalidate the SSTs in a
zone randomly, which incurs a significant GC overhead at
ZNS-based KV stores. It is our future work to analyze the
impact of several priority-driven compression algorithms
on the cost of garbage collection. The seek compaction, em-
ployed by LevelDB, also breaks the sequential selection order
by prioritizing to move the SSTs in read-intensive key re-
gions to lower levels to reduce the seek overhead. However,
the seek overhead is insignificant at SSD devices. In addition,
some SSTs can be cached in memory, and bloom filter can
be used instead of the seek compaction.
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