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ABSTRACT
We propose a novel whitelist-based anti-ransomware solu-
tion called alohomora. Alohomora is based on our observa-
tion that an I/O activity of an application can be an effec-
tive abstraction level for managing I/O whitelisting. In alo-
homora, when a write request is sent to an SSD, its program
context value (which is supported by a host CPU register)
is passed to the SSD. The SSD checks if the request was pre-
approved using the program context value, thus preventing
ransomware from modifying files in the SSD. Our experi-
mental results using a prototype alohomora system show
that alohomora can achieve a strong security level against
sophisticated ransomware attacks without degrading I/O
performance.

1 INTRODUCTION
Encrypting ransomware secretly encrypts files and demands
a ransom for exchanging a secret key that can decrypt the
encrypted files. When the encrypted files should be quickly
recovered for an attacked system to properly operate, the
only feasible solution might be to pay the ransom. For exam-
ple, a major oil pipeline company, whose billing system was
attacked by ransomware, paid about $4.4 million in exchange
for a decryption tool in 2021 [1]. The potential high financial
payoff from ransomware attacks made ransomware one of
the most serious threats in cyber security.

In order to protect files from ransomware attacks, a typical
anti-ransomware solution is based on two strategies: pre-
detection of ransomware and post-recovery of an attacked
system. A wide variety of techniques have been proposed to
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identify ransomware in advance based on known character-
istics of previous ransomware attacks [2–4]. However, since
it is not possible to detect all ransomware attacks in advance
(e.g., when a ransomware attack is based on zero-day ex-
ploits), many solutions focus more on efficient data-recovery
schemes. Although there exist multiple proposals for effi-
ciently managing backup files [5–7], most anti-ransomware
solutions based on the post-recovery strategy experience a
high recovery cost as well as a high back up overhead.
As the third defense strategy for ransomware attacks,

we investigate whitelisting-based solutions in this paper. A
whitelisting-based solution protects important files by grant-
ing access permissions only to pre-approved (i.e., whitelisted)
programs. Since explicit permission is needed to access a
file, as long as the permission is not compromised by ran-
somware, the file can be fully protected. For example, the
controlled folder access service [8] in Windows allows only
pre-approved programs to modify files in a protected folder.
A whitelisting-based solution has distinct advantages over
other solutions. Unlike the pre-detection approach, it sup-
ports zero-day protection for unknown ransomware attacks.
Compared to the post-recovery approach, little overhead
exists because no backup files are needed.

Although awhitelisting-based approach can be a strong de-
fense for ransomware attacks, the existing application-level
whitelisting techniques reveal unnecessarily large attack sur-
face to ransomware. If an adversary can inject malicious
code into the address space of a pre-approved program, an
application-level whitelisting solution cannot prevent ran-
somware from accessing important files. For example, an
adversary can inject ransomware into the memory space of a
whitelisted process using a DLL injection method [9]. Once
ransomware becomes a part of the whitelisted process, it
becomes impossible to protect from a ransomware attack.
In this paper, we propose alohomora1, a fine-grained

whitelisting technique based on I/O activities. Unlike existing
whitelisting-based solutions that check if the current appli-
cation is pre-approved for file accesses, alohomora checks
if the current I/O activity of an application is pre-approved

1Alohomora is the unlocking charm from Harry Potter.
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or not. Intuitively, an I/O activity represents a particular I/O
execution semantic context (e.g., an I/O activity for updat-
ing a row of a database file) within an application. Since
alohomora checks whether the I/O activity is pre-approved
or not, an application-level ransomware attack (such as the
DLL injection method) is not feasible unless ransomware
can modify a whitelist of pre-approved I/O activities.
In alohomora, we represent an I/O activity using a pro-

gram context (PrC) that encodes an execution path of a pro-
gram up to an I/O system call. The PrC value of an execution
path is computed by summing program counter (PC) values
of all the function calls along the execution path which leads
to a write-related system call. When a write system call is
invoked, alohomora passes the current PrC value to a stor-
age system. Before a write operation is physically executed
within the storage system, the storage system checks if the
PrC value belongs to its whitelist of pre-approved I/O activi-
ties. Alohomora achieves a near-perfect defense level against
ransomware as long as I/O activities of an application are
properly selected.

A strong defense capability of alohomora can be attributed
to three factors. First, alohomora manages the membership
of a whitelist at the I/O activity level, thus minimizing the
size of attack surface by ransomware. A whitelist of pre-
approved I/O activities works because the PrC value of an
I/O activity can be practically unique over all the other PrC
values (Section 2). Second, alohomora computes a PrC value
by hardware (with an ISA extension of a CPU) and maintains
the current PrC value in a privileged kernel-mode register
that cannot be accessed from a user-mode execution (Sec-
tion 2). Since the PrC value is read by a kernel when a write
system call is invoked, it is not possible for user-level ran-
somware to modify the PrC value so that it can be tricked to
be a member of the whitelist. Third, alohomora maintains
its whitelist inside a storage system, thus making it very
difficult for ransomware to access the whitelist (Section 3).
In order to evaluate the effectiveness of alohomora, we

built a prototype SSD that supports an in-SSD whitelist of
pre-approved I/O activities. Alohomoraworks with the Linux
kernel (ver. 5.10) running on top of an extended RISC-V CPU
with a PrC register. Our experimental results show that alo-
homora successfully protect user files from various sophisti-
cated ransomware attacks. Furthermore, our implementation
of alohomora shows that there is negligible overhead in sup-
porting alohomora.

The rest of this paper is organized as follows. We explain
the key idea of alohomora in Section 2 and describe the
design in Section 3. The experimental results are reported in
Section 4. Finally, we conclude in Section 5 with a summary.
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Figure 1: An example with different I/O activities.

2 I/O ACTIVITY AS AWHITELISTING
UNIT

The key differentiating factor of alohomora over existing
whitelisting techniques is its whitelisting granularity based
on an I/O activity. In alohomora, we grant a write permission
for each I/O activity that is represented by its PrC value. Fig-
ure 1 illustrates two I/O activities, updating and logging, of
a simple database program. The PrC value along the execu-
tion path main()→ db_main()→ db_update()→
sys_write() is 128 while that along the execution path
main() → logger() → sys_write() is 192. If both
I/O activities are pre-approved, their PrC values, 128 and 192,
are added to a whitelist of pre-approved I/O activities. As
shown in Figure 1, when ransomware issues a write system
call, which was not pre-approved, the crypto_write()
function fails because its PrC value does not belong to the
whitelist.

Since a PrC value is used to distinguish an I/O activity from
other I/O activities, it is critical to guarantee that different I/O
activities do not collide with the same PrC value. Intuitively,
we can argue that a PrC value is indeed unique over all the
other PrC valueswithin a single application. For example, it is
not possible for two I/O activities to have the same PrC value
because at least one PC value along their execution paths
should be different. Otherwise, the execution paths of two
I/O activities become identical. I/O activities among different
applications can be easily distinguished by incorporating a
unique application ID when computing a PrC value. When
an application is launched, its hash value, which is computed
based on its executable binary, is used as an initial offset of
the PrC value.
The PrC value of an I/O activity (i.e., an execution path

to a write system call) can be extracted in a straightforward
fashion if a frame pointer is used for managing a proce-
dure call stack. By backtracking stack frames of a process
when sys_write() is invoked, we can get all the return
addresses along the execution path. Figure 2(a) illustrates
how the PrC value is computed for the updating activity
of Figure 1. The PC values of main(), db_main(), and
db_update(), can be computed from their respective re-
turn addresses while the PC value of sys_write() can
be read from a hardware register (e.g., epc in RISC-V ISA).
However, a frame pointer-based SW method is difficult to
use in practice because many modern C/C++ compilers do
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Figure 2: Two methods for computing PrC values.

not use a frame pointer for higher performance. For example,
when the -fomit-frame-pointer option of GCC is used, no
frame pointer is used in managing a procedure call stack.
Furthermore, since the PrC value is computed using return
addresses in the user stack memory, if an adversary has a
capability to change the content of the user stack memory,
using an I/O activity as a whitelisting unit is not a secure
approach.

In alohomora, a PrC value is fully computed by hardware
within a CPU. We extend a host CPU to support a privileged
PrC register, prc, which is updated when a call instruction
and a return instruction are executed. Since the PrC value
represents an I/O activity of a user application, prc is up-
dated only in the user mode execution. Figure 2(b) illustrates
how the prc is managed while the same updating activity
is executed. When call (as well as ecall2) is executed, prc is
incremented by the PC value of the current call instruction
(e.g., 8 for call main() and 60 for ecall sys_write()),
and when ret (as well as sret) is executed, prc is decremented
by the PC value of its matching call instruction (e.g., 60 for
sret sys_write()). When sys_write() is invoked by
a trap instruction (e.g., ecall), a syscall handler simply reads
prc in the kernel mode to find the PrC value of the current
I/O activity. Since prc is computed by hardware and only
accessible in the kernel mode, the hardware-based method
provides a strong protection against any user-mode attack
attempt.

3 DESIGN OF ALOHOMORA
3.1 Threat Model
We assume that ransomware can obtain the root privilege
but it cannot run in the kernel mode. Therefore, ransomware
can manipulate any process within an infected system. For
example, it can disable anti-virus daemons and shut down a
backup subsystem to evade system-level defenses. However,
since ransomware cannot operate in the kernel mode, we
exclude any attack that requires to modify kernel-internal op-
erations or data structures. For example, it is not possible to
modify a PrC value of an I/O activity that is temporary stored

2In RISC-V, the ecall instruction is used to invoke an OS syscall handler
while the sret instruction is used to return from it.
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Figure 3: An overall architecture of alohomora

within the kernel-internal memory (i.e., before it is passed to
a device driver). Our assumption on the kernel-mode attack
is reasonable because such attacks (e.g., kernel mode rootkits
[10], and malicious kernel patches [11]) are extremely dif-
ficult to succeed in modern OSes. For example, in order to
prevent kernel mode rootkits, most modern OSes support
signed kernel modules for stronger kernel security[12], thus
making it very difficult for ransomware to load a malicious
module to a kernel. Furthermore, attacks that maliciously
alter the kernel files saved in disk can be defended by check-
ing the integrity of the kernel code when a system reboots
[13, 14].

3.2 Alohomora Overview
Figure 3 depicts an overall organization of alohomora. Since
alohomora uses a PrC value to determine if the I/O activity
is pre-approved or not, the implementation of alohomora
requires several changes from a host CPU to a host OS ker-
nel to an SSD so that PrC values are properly handled. A
host CPU is extended to support the prc register (in the PrC
Updater module in Figure 3) while an SSD needs to manage
a whitelist of pre-approved I/O activities (in the Whitelist
Manager in Figure 3).
A host kernel needs to be modified so that a correct PrC

value is sent to an SSD. Since an asynchronous write is tem-
porarily stored in a page cache before it is passed to an SSD,
the host kernel needs to maintain the PrC value of a written
page. The Page2PrC Mapper module in Figure 3 is responsi-
ble for maintaining PrC values of pages in the page cache.
For example, the page 100 was written by an I/O activity
whose PrC value is 27. Since the same page can be writ-
ten by different I/O activities, the Page2PrC Mapper module
maintains a list of PrCs for written page (e.g., a list of two
PrC values, 79 and 99, for the page 500). When a page is
flushed from the page cache, the mapped PrC list of the page
is sent to the SSD. Since the current NVMe write command
cannot accommodate multiple PrC values within its current
command format, we proposed a new NVMe command for
sending a mapped PrC list to the SSD. As shown in Figure
3, the send_prc() command is used to transfer a mapped
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PrC list of a previous write command. The id field of a nor-
mal NVMe write command is used to match a mapped PrC
list to a proper previous write request.

Since the prc register is a new addition to an ISA of a host
CPU, a host kernel is modified to handle the prc register
in a proper fashion. When a CPU is allocated to a different
process by a context switch, the current prc register value
should be saved as an attribute of a process state so that its
value is saved and restored on a context switch. Furthermore,
when a new program is started (e.g., by execve()), the prc
register should be changed to the initial PrC value of the
new program (i.e., its application ID).

3.3 Whitelist Management
Alohomora assumes that a PrC value of a pre-approved I/O
activity should be known in advance so that the PrC value
can be managed inside an SSD. However, statically finding all
the possible PrC values of I/O activities of an application in
advanced is challenging. In the current version of alohomora,
we employ both a static PrC extraction technique as well as
a dynamic PrC extraction technique. In order to statically
compute a PrC value of an I/O activity, we use a binary-level
reverse engineering tool [15] that can generate a call-return
graph of an executable binary. Using the call-return graph,
all the potential execution paths to write-related system calls
are identified and their PrC values are statically computed.
Unfortunately, the static PrC extraction technique is not
perfect. For example, when a function pointer is used to
invoke a function that eventually calls a write system call, it
is not possible to find out the PrC value of the corresponding
I/O activity.

In order to mitigate the weakness of the static technique,
we use an alohomora-aware SSD to identify potentially
missed I/O activities during run time. The SSD is configured
to notify a host when a PrC value of a write request does not
belong to the whitelist of the SSD. Using the feedback infor-
mation from the SSD, we can find missed I/O activities. Only
trusted users can configure an SSD to provide a feedback on
the whitelist membership status of a write request.

3.4 File Metadata Management
When a file is written by an unauthorized write request,
alohomora safely prevents the requested data from being
stored to an SSD. However, since a host file system does
not know in advance if a file write will be rejected by an
alohomora-aware SSD, a special care is needed to guarantee
the atomicity of a file data write operation and its metadata
update operation. When a file write is issued to an SSD, a
host kernel saves an old version of file metadata until the
SSD decides if the write activity is a member of a whitelist.
When the write activity was not pre-approved, the saved

metadata is restored so that the file system consistency is
maintained.

3.5 Code Relocation Management
Alohomora assumes that a PrC value of a write activity in
an application does not change over different executions.
However, this assumption may not hold when position-
independent codes (PIC) [16] are loaded in memory. For
example, when a shared library is dynamically loaded, its
executable can be loaded to any page-aligned virtual address,
thus making a PrC value variable depending on loaded mem-
ory locations of a shared library. To address this issue, alo-
homora slightly modifies the load procedure of an executable
code. In our current version of alohomora, we require that
an executable code is aligned to the 24-bit boundary, thus
guaranteeing that the lowest 24 bits of PC does not change
over different executions. When a PrC value is computed by
a host CPU, we use only the lowest 24 bits of PC, ignoring
the upper bits (although the prc register maintains a 64-bit
value). Meeting the 24-bit alignment requirement is not a
problem because modern OSes support large virtual address
spaces (e.g., 256 TB with 48 bits).

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
In order to understand the effect of alohomora and its per-
formance implications, we have built a prototype alohomora
system. Figure 4 shows an overview of our prototype imple-
mentation. The host side of our prototype runs Ubuntu 20.04
with a modified Linux kernel (ver. 5.10) on an open-source
RISC-V development platform [17]. The enhanced RISC-V
CPU with prc register was synthesized on an FPGA-based
VC707 board [18] with four RISC-V cores and 4-GB DRAM.
Each RISC-V core supports RV64GC ISA and runs at 100-MHz
clock speed. An alohomora-aware SSD was implemented on
the Cosmos+ OpenSSD board [19] with an ARM Cortex A9
processor and 1-GB DRAM that has 512-GB storage capacity.
We extended the OpenSSD firmware, greedy-FTL [20], to
implement the I/O whitelisting module. Although several
layers of an I/O stack need to be modified to support alo-
homora, most changes are rather straightforward. As shown
in Table 1, the implementation complexity is not high. For
example, 38 lines of Chisel code were added to support the
prc register while 230 lines of code were modified in Linux
kernel.

4.2 Ransomware Defense Capability
In order to demonstrate that alohomora can protect files from
various ransomware attacks, we used 37 public ransomware
programs that included a total of 162 malicious write ac-
tivities. Although the attacked files were encrypted in the
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Figure 4: A prototype alohomora system setup.

host memory, the file contents in the SSD were not compro-
mised. When the SSD was remounted (or a page cache/buffer
was flushed), all the files were fully recovered. Furthermore,
when an unauthorized write request was detected by the
SSD, the host kernel was notified by a special I/O failure flag
so that a ransomware attack can be detected early.
In order to show the key differentiating aspect of alo-

homora over the existing application-level whitelisting tech-
niques, we simulated the worst-case user-level attack sce-
narios for alohomora where a pre-approved program is in-
tentionally compromised by injecting ransomware into the
address space of the pre-approved program. To inject a ran-
somware program into the pre-approved program, we man-
ually modified the LD_PRELOAD environment variable so
that the ransomware program can be placed within the pre-
approved application.
Table 2 summarizes six combinations of a pre-approved

program and a injected ransomware program with their
respective numbers of PrC values. For ransomware pro-
grams, we used five open-source ransomware programs,
GonnaCry [21], RAASNet [22], Ransom0 [23], Hidden-tear
[24], and FSociety [25] as well as one custom-built program,
CustomRS. Unlike open-source ransomware, CustomRS em-
ployed a large number of write activities for simulating more
intensive attack scenarios. For pre-approved applications,
we used MariaDB (a database program [26]), RocksDB (a
key-value database [27]), GCC (a GNU C compiler [28]), and
Bacula (a backup application [29]). As expected, alohomora
successfully defended the pre-approved applications from six
ransomware programs even when a ransomware program
was injected as a part of a whitelisted program.

4.3 Overhead Evaluation
To understand the impact of alohomora on I/O performance,
we compared the I/O throughput of the alohomora SSD over
that of a baseline SSD with no alohomora support. We mea-
sured IOPS values from the baseline SSD (baseline) and three
alohomora SSDs (aloho-1K, aloho-10K, and aloho-100K).
Three alohomora SSDs are different in their whitelist sizes
(i.e., from 1-K entries to 100-K entries). All the measurements
were normalized to ones from the baseline SSD.We used four
applications in Table 2 as benchmark programs. Since only
write requests affect the performance of the alohomora SSD,

Implementation Layer Lines of Codes (P/L)
RISC-V Extensions 38 (Chisel)

Linux Kernel Extensions 211 (C), 19 (Assembly)
FTL Extensions 127 (C)

Table 1: A summary of implementation complexity.
Ransomware Application

Name # of PrCs Name # of PrCs
GonnaCry 7 MariaDB 152
RAASNet 5 RocksDB 51
Ransom0 3 GCC 131

Hidden-tear 4 Bacula 35
FSociety 4 MariaDB 152
CustomRS 60 RocksDB 51

Table 2: A summary of synthetic test cases.
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Figure 5: A comparison of normalized IOPS values.
we ran benchmark programs under write-intensive work-
loads. For MariaDB and RocksDB, we used Sysbench [30]
and db_bench [31], respectively, with a read/write ratio of
2:8. For GCC, Linux source files were compiled. For Bacula,
a large directory and its sub-directories were backed up.

Figure 5 shows normalized IOPS values of three alohomora
SSDs over the baseline SSD. All three alohomora SSDs ex-
hibit negligible IOPS degradations. For aloho-1K, only 1.9%
of average IOPS drop occurs. Even for aloho-100K, which
has a unrealistically large whitelist, there is an average IOPS
penalty of 3.7% over baseline. A small performance overhead
of the alohomora SSD can be attributed to two reasons. First,
a whitelist search overhead is negligible over a typical flash
page program time. For example, for aloho-1K, the average
whitelist search time was 1.2 𝜇s while a typical flash page
program time is about 400 𝜇s [32]. Second, since a whitelist
can be constructed in advance from pre-approved applica-
tions, its data structure can be easily optimized. For example,
in our current implementation, a whitelist is organized as a
binary search tree, thus making a whitelist search efficient.

5 CONCLUSIONS
We have presented a new whitelisting-based anti-
ransomware solution, alohomora, that provides a strong
protection capability based on a cross-layer implementation
approach. Unlike existing application-level whitelisting
techniques, alohomora employs an I/O activity as a
whitelisting unit, thus successfully protecting files from
existing attack schemes for application-level whitelisting
solutions. By checking if an I/O activity was pre-approved or
not inside an alohomora-aware SSD, our solution provides
near-perfect protection support for files stored in the SSD.
Our experimental results based on a prototype alohomora
system implementation show that alohomora successfully
blocked sophisticated ransomware attacks with little SSD
performance degradation.
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