
Rethinking Block Storage Encryption with Virtual
Disks

Danny Harnik
IBM Research

Oded Naor
Technion∗

Effi Ofer
IBM Research

Or Ozery
IBM Research

ABSTRACT
Disk encryption today uses standard encryption methods
that are length preserving and do not require storing any
additional information with an encrypted disk sector. This
significantly simplifies disk encryption management as the
disk mapping does not change with encryption. On the other
hand, it forces the encryption to be deterministic when data
is being overwritten and it disallows integrity mechanisms,
thus lowering security guarantees. Moreover, because the
most widely used standard encryption methods (like AES-
XTS) work at small sub-blocks of no more than 32 bytes,
deterministic overwrites form an even greater security risk.
Overall, today’s standard practice forfeits some security for
ease of management and performance considerations. This
shortcoming is further amplified in a virtual disk setting that
supports versioning and snapshots so that overwritten data
remains accessible.
In this work, we address these concerns and stipulate

that especially with virtual disks, there is motivation and
potential to improve security at the expense of a small perfor-
mance overhead. Specifically, adding per-sector metadata to
a virtual disk allows running encryption with a random ini-
tialization vector (IV) as well as potentially adding integrity
mechanisms. We explore how best to implement additional
per-sector information in Ceph RBD, a popular open-source
distributed block storage with client-side encryption. We
implement and evaluate several approaches and show that
one can run AES-XTS encryption with a random IV at a

∗Part of the work was done while Oded was interning at IBM Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage’22, June 27-28, 2022, virtual conference
© 2022 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.1145/3538643.3539748

manageable overhead ranging from 1%–22%, depending on
the IO size.
ACM Reference Format:
Danny Harnik, Oded Naor, Effi Ofer, and Or Ozery. 2022. Rethink-
ing Block Storage Encryption with Virtual Disks. In Proceedings
of 14th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage’22). ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3538643.3539748

1 INTRODUCTION

Disk Encryption: Data-at-rest disk encryption is at the foun-
dation of storage security and has been a central requirement
for persistent storage over the years. It requires that data
is encrypted before being written to disk so that if the disk
is stolen or illegally accessed, attackers would not be able
to make sense of the data (as long as they do not hold the
encryption key).
When encrypting a disk one must take into account its

structure and access patterns. Disks are accessed at a sector
granularity and as such, encryption is done at a sector-by-
sector granularity. Originally, disk sectors were 512 bytes
each, and today they are typically 4096 bytes. As such, disk
encryption encrypts each sector separately. Moreover, in a
disk, each sector is addressed by the Logical Block Address
(or LBA) and to simplify the integration of encryption, this
mapping is kept intact when data is encrypted. This implies
that the encryption of a sector should have the same length as
the sector.

Several issues arise when the length of the output cannot
grow. Mainly:
(1) Deterministic encryption: To achieve Semantically secure

encryption, the encryption must not be deterministic [7].
In particular, if a sector is overwritten, an adversary must
not be able to determine whether the contents of the
sectors have changed during the overwrite. Yet if the
encryption is deterministic, this information is obvious
since the same plaintext would yield the same cipher-
text. The common mechanism to avoid determinism in
encryption is to add a nonce as an input to the encryp-
tion. This nonce, usually called the Initialization Vector
(IV), is a string of bits that is guaranteed not to repeat

9

https://doi.org/10.1145/3538643.3539748
https://doi.org/10.1145/3538643.3539748
https://doi.org/10.1145/3538643.3539748

HotStorage’22, June 27-28, 2022, virtual conference Danny Harnik, Oded Naor, Effi Ofer, and Or Ozery

itself between instances of encryption, hence avoiding
the determinism of the encryption function (note that
the IV, unlike the encryption key, can be made public).
The IV is required in order to decrypt the data and hence
must be stored alongside the encrypted data and read for
the decryption process. The problem is that with stan-
dard disk encryption, there is no room left to store the
IV alongside the encrypted sectors.

(2) Authentication of encryption: In length preserving encryp-
tion, changing a part of the cipher of a sector generates
a new legal encryption pattern (of a different plaintext).
This means that one cannot detect changes to the ci-
phertext, whether malicious or accidental. The common
approach to handle authentication of encrypted data is to
hold an additional Message Authentication Code (MAC)
that can later be used to verify that the encrypted sector
has not changed. In traditional disk encryption, there is
no room to store a MAC associated with each sector.

In short, since the length of the output cannot grow, it is
possible to identify which sections have changed between
writes and also possible to revert a sector to an older version.

Disk Encryption Today: Given the length preserving limi-
tations and the lack of space for additional per-sector infor-
mation, the cryptographic and security communities resorted
to the following approach:
• Use a unique data encryption key per disk. This key is
used to encrypt all the sectors in the disk.

• In order to avoid deterministic encryption across sectors,
the sector number or LBA is used as an additional per
sector input to the encryption. The sector number is used
together with the key to derive the actual IV used in each
encryption block. Because the sector number is also known
during reads, it can be used to correctly decrypt the data.

• Devise encryption modes that will not “break" if a nonce
is repeated with different data. Namely, the data itself
remains unknown, and the only information divulged is
whether the underlying plaintext has changed or not. AES-
XTS [4, 18] is the most commonly used method today that
was designed to remain secure under repeating IVs. 1

In reality, repeating the same IV even in AES-XTS is not
ideal [17], as is explained below in §2.1. However, it is a com-
promise that the community was willing to take with the
lack of a better alternative. Since data written to different
addresses uses different IVs, the only security concerns arise
with overwrites to the same address. In that sense, full disk
encryption with AES-XTS guarantees that if the disk is phys-
ically stolen, then no data in the disk is encrypted with the

1Historically, AES-CBC was the widely used encryption method, but it was
replaced due to security attacks on this mode.

same IV since there is no record of overwrites of the data.2
It is only when an adversary eavesdrops to the write stream
over a disk that it will encounter sectors encrypted with the
same IV due to overwrites.

Virtual Disks: Virtual disks change the equation in two fun-
damental ways. The first is the snapshot capabilities which
are an important feature of such disks. In the presence of
snapshots, various versions of data written to the same sec-
tor are kept and persisted one alongside the other (this holds
for every mechanism for snapshots or versioning above the
disk layer, whether in virtual disks or not). This means that
the guarantee of no repeating IV in a stolen physical disk no
longer holds. With various versions of the data encrypted
under the same IV one can, for example, manipulate the data
to contain arbitrary combinations of data from various snap-
shots (creating the encryption of a data combination that
was never actually written).

The second consideration is that while for a physical disk it
is very tempting to avoid adding a layer of virtual-to-physical
mapping, for a virtual disk this is a non-issue. A virtual disk,
by definition, already contains a virtual-to-physical mapping
layer which we can piggyback on to augment the layout and
incorporate additional per-sector information.

Our Work:We study the possibilities of adding per-sector
information in the context of encryption in a specific setting
- Ceph block storage [22] (also known as Ceph RBD). Specifi-
cally, we modify the built-in client-side encryption in Ceph
RBD to use a fresh random IV per each sector write. The IV
is persisted to disk to be used during read operations. We
evaluate the tradeoffs of such a design, providing improved
security at the cost of the overhead required to persist and
read the random IVs. We show that for the best implementa-
tion option we test the performance overheads are no larger
than a 22% overhead on writes and 3% on reads.

Structure: The rest of the paper is structured as follows: §2
provides the necessary background and related work; §3 de-
tails the implementation and results; and lastly, §4 concludes
the paper and discusses future work.

2 BACKGROUND
2.1 AES-XTS and its Shortcomings
AES-XTS is the prevalent standard used for disk encryption
to date. Among others, it is available in Android [3], Ap-
ple’s Filevault [1], Microsoft’s BitLocker [15], and Linux’s
DMCrypt [10]. It is a specific implementation of tweakable

2Note that in SSDs overwritten data typically remains on the disk until
garbage collection kicks in. Thus, accessing the flash at a physical layer
(rather than standard disk access) may reveal different data encrypted with
the same IV (as pointed out in [24]).

10

Rethinking Block Storage Encryption with Virtual Disks HotStorage’22, June 27-28, 2022, virtual conference

encryption [11] - a block encryption mode that takes as input
an additional parameter (the tweak) that can be public and
adds variability to an otherwise deterministic encryption
function. AES-XTS is used in disk encryption by setting the
tweak, also referred to as the IV (Initialization Vector), to be
the sector number, also referred to as the LBA (Logical Block
Address). Therefore, if the same data is written to different
sectors they will result in totally different ciphertext as they
will use different IVs. A critical security property required
of tweakable encryption is that if different plaintexts are
encrypted with the same IV, still no information can be de-
duced about the encrypted data. AES-XTS only achieves this
to a certain extent.

In an ideal block cipher, even if it is deterministic, changing
a single bit in the plaintext of a sector will result in an en-
tirely different, (random-looking) ciphertext sector. However,
AES-XTS falls short of this (as do many other AES-based
encryption modes). In AES-XTS, changing a single bit in
the sector (without changing the key or IV) will yield the
expected change only to the sub-block in the cipher to which
this bit belongs. The sub-blocks are the same size as the
encryption key - either 32 bytes (AES-256) or 16 bytes (AES-
128) and stem from the way AES-XTS is built on top of the
AES primitive - a building block that works on small 16/32
byte blocks. Such ciphers are referred to as narrow-block
encryption. This means that during an overwrite of a sector
(using the same LBA and thus the same IV), an adversary
can detect exactly which of the sub-blocks has changed and
which have remained the same. Moreover, one can manip-
ulate ciphertexts at a sub-block level. For example, given
two versions of ciphertexts written to the same LBA, one
can generate a new ciphertext of this sector that combines
sub-blocks from both versions. The resulting ciphertext is
legal and the manipulation cannot be detected. So encrypt-
ing different plaintexts with the same IV provides very good
security guarantees at a granularity of a single sub-block,
yet leaks some information about the relation between the
plaintexts at a sector granularity. Still, due to the practicality
of AES-XTS for disk encryption, it is widely used.
Similar shortcomings also exist in other popular block

cipher modes. For example, in AES-CBC [5] one can detect
the first sub-block in which a bit has changed. Note that other
methods like AES-GCM [12, 14] are completely insecure if
the same key and IV are used and may leak information
about the plaintext. Hence such modes can only work with
a true nonce as an IV (one that never repeats).

2.2 Possible Mitigations
The approach that we take to remedy the security shortcom-
ings is to use a random IV rather than use the LBA. If the

random IV is chosen from a large enough range, the proba-
bility of ever repeating an IV is negligible. This in essence
removes the determinism of encryption for overwriting a
sector and an adversary would not be able to detect if the un-
derlying plaintext has changed at all. However, as described
in the introduction, this requires writing the per-sector IV
to the disk so that the sector could be decrypted during
reads. Note that one should also include the sector number
as part of the IV in order to avoid replay attacks where data
encrypted at one LBA is replayed at another LBA.3

Using an authentication code (MAC) on the ciphertext can
prevent the various manipulation attacks described above,
but also requires additional space. Also, using authentication
alone still exposes which parts of the plaintext have changed
during an overwrite.
Another approach is using wide-block encryption [9], an

encryption method in which every bit of the plaintext of a
sector will influence the entire ciphertext of the sector (as op-
posed to methods like XTS which are narrow-block ciphers).
This holds even if it is built on top of a building block like
AES which works on a much smaller size than the sector.
Wide-block encryption has been standardized [9], with two
certified methods - XCB-AES[13] and EME2-AES [8, 9]. Yet
it has not been widely adopted mainly due to lower perfor-
mance, as well as implementation and patenting considera-
tions. Using a wide-block cipher still carries the limitations of
a deterministic cipher (an exact overwrite is easily identified),
yet limits the attack granularity to that of a full sector.

2.3 Related Work
The security concerns about the commonly used methods
for disk encryption have been raised and studied by the
cryptographic community. This was the main motivation for
studies on wide-block encryption and their standardization
effort [9].
Brož et al. [2] studied adding additional per-sector meta-

data as part of the dm-crypt encryption framework in the
Linux kernel. They do this by using an additional device-
mapper called dm-integrity that can be used for storing au-
thentication information, or in the encryption case also a
random IV. To ensure consistency between the data sector
and its metadata, they resort to using a journal which is
shown to reduce the throughput by nearly one-half. Zhang
et al. [24] integrate the AES-XTS encryption with the Flash
Translation Layer (FTL) of an SSD and use the number of
overwrites a sector has as a seed for its IV (hence ensuring
that each overwrite gets a unique IV). This approach works
well for storage-side encryption, which means that the data
exists in the clear at the storage before being encrypted. Our

3In a system with snapshots one can also integrate the snapshot number
into the IV to avoid cross snapshot replay attacks.

11

HotStorage’22, June 27-28, 2022, virtual conference Danny Harnik, Oded Naor, Effi Ofer, and Or Ozery

Host

OSD3

Monitor
OSD2OSD1

Manager

Ceph cluster

libRBD

libRADOS

Client

Figure 1: Ceph’s architecture

work targets encryption at the client-side of a distributed
storage system, ensuring that the data is always encrypted
outside of the client, and attempts to piggyback the indirec-
tion layer of the distributed storage system.

Note that some storage protocols like NVMe (starting from
version 1.2) [23] include the option for a per-sector metadata
support. However, this is not widely implemented in existing
SSDs and existing implementations typically only allow for
8 bytes of metadata per sector, which is too short for our
use-case.

2.4 Ceph RBD Encryption
Ceph [22] is an open-source distributed storage platform
that provides support for object storage, block storage, and
file storage. In this work, we focus on the block-storage of
Ceph called RBD (Rados Block Device).
The general architecture of a Ceph RBD deployment is

depicted in Fig. 1. The Ceph cluster is made out of OSD nodes
(Object Storage Devices) that actually store the data and its
replicas,monitors that maintain maps of the cluster state and
perform access control, andmanagers that provide additional
metrics and interfaces.
In its standard deployment, Ceph RBD employs a client-

side driver called libRBD at each host accessing the storage.
For every virtual disk, libRBD maps each LBA to a specific
OSD node by breaking the LBA space into objects (typi-
cally 4MB in size) and computing a placement algorithm for
objects. The libRBD library distributes each IO to its cor-
responding OSD via a proprietary protocol called RADOS.
The RADOS protocol supports several high-level functions
such as snapshots. It also has supports transactions in which
writes of several small IOs are guaranteed to be written
atomically. This proved very useful in ensuring consistency
between written data and per-sector metadata.
RBD supports client-side encryption [19], allowing for

data to never leave the host in the clear. The encryption
follows the LUKS standard for encrypted disks in which the
default encryption is AES-XTS.4
4Note that LUKS has 2 versions, LUKS1 [6] and LUKS2 [16]. In LUKS2, the
default sector size is 4KB per block whereas in LUKS1 it is limited to 512
bytes only which makes adding per-sector information far more costly. In
this work, we only consider 4KB sectors.

dataIVdata data IV data IVIV

(a) Unaligned: each IV is stored at the end of its
block.

data IVs

(b) Object end: All IVs stored at the end of the entire
object.

data IVs

(c) OMAP: IVs stored at an external key-value DB.
Figure 2: Storage options for IVs

3 IMPLEMENTATION AND EVALUATION
3.1 Design Choices for Storing Per-Sector

Information
We explore how to integrate support for additional per-sector
information. We focus on the use-case of using a random
IV with AES-XTS encryption, but this can be used also for
storing integrity information, or using an alternative cipher
like AES-GCM.We leave evaluation of these options to future
research.

We implement three alternatives on where to store the IV
with Ceph RBD, which are illustrated in Fig. 2.

The first alternative is the naïve approach of storing each
IV after its matching block in an unaligned contiguous man-
ner. Thus, each access is contiguous to the data and its match-
ing IV, but since the IV size is less than a disk sector size,
almost all of the data is unaligned to the disk sectors.

The second alternative keeps the sector alignment by pack-
ing several IVs together. The Ceph architecture of breaking
data into objects lends itself nicely to this approach. For each
object 4MB in size, we store all the IVs of the object after
the encrypted data, i.e., at the object end. In this manner, we
keep the division into objects as before, the address of an
LBA within an object also remains the same, and the IVs are
batched together at the object end.

Lastly, we consider using a separate key-value database to
store the IVs. In Ceph, each object has a matching database
to store additional metadata. This database, which is named
OMAP, is implemented using RocksDB [21] and can be used
to store the IVs. OMAP supports accessing multiple values
based on a range of integer keys with a single operation.
Thus, if the key used to store each IV is the offset of the
block in the object, then a contiguous read or write of the

12

Rethinking Block Storage Encryption with Virtual Disks HotStorage’22, June 27-28, 2022, virtual conference

0

500

1000

1500

2000

2500

3000

4 8 16 32 64 128 256 512 1024 2048 4096

Ba
nd

w
id

th
 [M

B/
s]

IO size [KB]

LUKS2

Unaligned

Object end

OMAP

(a) Read bandwidth

0

500

1000

1500

2000

2500

3000

4 8 16 32 64 128 256 512 1024 2048 4096

Ba
nd

w
id

th
 [M

B/
s]

IO size [KB]

LUKS2

Unaligned

Object end

OMAP

(b) Write bandwidth

Figure 3: Performance results for random read and write workloads

0%

20%

40%

60%

80%

100%

4 8 16 32 64 128 256 512 1024 2048 4096
IO size [KB]

Unaligned

Object end

OMAP

Figure 4: Write performance overhead

data can also be accessed with a single operation on the
key-value database.

In all of the above implementations we use the support in
the Ceph RADOS protocol for atomically writing multiple
IOs to ensure data and IV consistency.
3.2 Test Environment
We implement the three alternatives and test their perfor-
mance on a 3 node Ceph cluster running Ceph version 16.2.4.
We use Ceph’s default configuration of 3-way replication, an
object size of 4MB, and an encryption block size of 4KB. We
only modify the code on the client nodes that run our modi-
fied libRBD code. The OSD nodes are Intel Xeon E5-2650 v4
CPUs. Each node has 9 Intel NVMe disks, of 1.8TB each, and
128GB of memory by 8 DDR4-2400 CL17. The OS is Red Hat
Enterprise Linux version 8.4 (Ootpa). The client nodes have a
similar CPU and OS version, but with 384 GB memory by 12
DDR4-2400 CL17 of 32GB each. The links between all nodes
are 100 Gb/s, and when running iperf between the nodes we
measure a bandwidth of around 13 Gb/s.
3.3 Results
To measure the throughput performance, we use fio [20]
which has native support for Ceph RBD. We use fio version
3.1, and deploy a single client random read and write work-
loads, with 32 maximum parallel accesses on a full Ceph
image of 64GB. There are tests for IO sizes ranging from 4KB
to 4MB and each test is repeated 10 times. Sequential IO tests

are not presented, but give similar results to random IO with
large sizes.

Fig. 3 presents a comparison of the three approaches to the
baseline which is Ceph’s LUKS2 implementation [19] with
deterministic LBA based IVs that are not stored. Of the three
random IV implementation options, the object end gives the
best results for both reads and writes.
For the read workloads, all three approaches perform

nicely, likely due to the backend’s ability to do the IV reads
in parallel to the data IO. The OMAP version fares slightly
worse, due to the overhead of accessing the DB. The object
end approach closely mirrors the baseline where the biggest
difference we measure is 3%.
For the write workloads, there is a significant difference

between the three options. Fig. 4 presents the performance
degradation of each method compared to the LUKS2 baseline,
i.e., lower is better. For the small block sizes, the OMAP solu-
tion gives the best performance, but this briefly changes as
the IO size increases and the DB fails to provide high perfor-
mance. The object end option performs better for almost all
IO sizes, resulting in 1%–22% performance loss, depending
on the IO size.
As the IO size grows, the theoretical overheads of un-

aligned and object end, measured as the number of sectors
that need to be read or written to disk, decrease. For exam-
ple, in a 4KB write/read, a minimum of two physical disk
sectors need to be accessed (one for the data and one for the
IV) versus one in the baseline. Whereas a 32KB IO typically
requires 9 sectors to be accessed versus 8 in the baseline.
Indeed, as the IO size grows we see an improvement in the
measured performance overhead (except for an unexplained
degradation at 1024KB writes). In the OMAP solution, this
calculation does not work and hence the overhead grows
significantly with the IO size. We suspect that the unaligned
solution performs worse due to unaligned operations that
trigger costly read-modify-write operations (these could po-
tentially be further optimized with intelligent buffer writes).

13

HotStorage’22, June 27-28, 2022, virtual conference Danny Harnik, Oded Naor, Effi Ofer, and Or Ozery

4 CONCLUSIONS AND LOOKING
FORWARD

The purpose of this paper is to raise awareness in the storage
community to the security concessions that wemake in order
to accommodate simpler and more efficient encryption tech-
niques. We further wish to demonstrate that better security
can be achieved by adding the proper support in the storage
layer and explore the performance tradeoff associated with
this. We hope to further understand the performance results
that we observed and explore how much they apply to differ-
ent Ceph configurations and different hardware or scale. We
also ask how this design can be generalized to other systems.

We point out that working at the virtual mapping layer of
the storage system creates opportunities for more efficient
implementation than doing the mapping as an additional
layer (like the implementation in dm-crypt [2]). We expect
that similar designs can be achieved in other architectures
for virtual disk other than Ceph.
In the long term, we believe that block storage systems

would benefit by natively supporting per-sector metadata
as part of their initial design. Could a change in the stan-
dard block storage APIs to include per-sector metadata be
advisable or beneficial? This could allow simple extensions
from layers above the block storage (like dm-crypt). Fur-
thermore, we wonder what additional usecases could benefit
from per-sector metadata beyond security and integrity?

ACKNOWLEDGMENTS
Oded Naor is grateful to the Azrieli Foundation for the award
of an Azrieli Fellowship, and to the Technion Hiroshi Fu-
jiwara Cyber-Security Research Center for providing a re-
search grant. We thank Jonas Pfefferle, Nikolas Ioannou,
Andreas Döring and Sangeev Gupta for their help with the
evaluation environments. We also thank Jason Dillaman for
enlightening design discussions and his insights on Ceph
architecture.

REFERENCES
[1] Apple. [n.d.]. https://support.apple.com/en-us/HT204837 Accessed:

2022-03-20.
[2] Milan Brož, Mikulás Patocka, and Vashek Matyás. [n.d.]. Practical

Cryptographic Data Integrity Protection with Full Disk Encryption.
In ICT Systems Security and Privacy Protection - 33rd IFIP TC 11 Inter-
national Conference, SEC 2018, Vol. 529. 79–93.

[3] Android documentation. [n.d.]. https://source.android.com/security/
encryption Accessed: 2022-03-20.

[4] Morris Dworkin. 2010. Recommendation for Block Cipher Modes of
Operation: the XTS-AES Mode for Confidentiality on Storage Devices
- NIST SP 800-38E.

[5] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L Tuch-
man. 1978. Message verification and transmission error detection by
block chaining. US Patent 4,074,066.

[6] Clemens Fruhwirth. 2018. LUKS1 On-Disk Format Specifica-
tion. https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-
standard/on-disk-format.pdf

[7] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. J.
Comput. Syst. Sci. 28, 2 (1984), 270–299.

[8] Shai Halevi. 2004. EME*: Extending EME to Handle Arbitrary-Length
Messages with Associated Data (INDOCRYPT’04). Springer-Verlag,
Berlin, Heidelberg, 315–327.

[9] IEEE. 2021. IEEE Standard for Wide-Block Encryption for Shared
Storage Media. IEEE Std 1619.2-2021 (Revision of IEEE Std 1619.2-2010)
(2021), 1–88. https://doi.org/10.1109/IEEESTD.2021.9457235

[10] Linux. [n.d.]. https://gitlab.com/cryptsetup/cryptsetup/-/wikis/
DMCrypt Accessed: 2022-03-20.

[11] Moses Liskov, Ronald L Rivest, and David Wagner. 2011. Tweakable
block ciphers. Journal of cryptology 24, 3 (2011), 588–613.

[12] David McGrew and John Viega. 2004. The Galois/counter mode of
operation (GCM). submission to NIST Modes of Operation Process 20
(2004), 0278–0070.

[13] David A. McGrew and Scott R. Fluhrer. 2007. The Security of the
Extended Codebook (XCB) Mode of Operation. In Selected Areas in
Cryptography. 311–327.

[14] David A McGrew and John Viega. 2004. The security and performance
of the Galois/Counter Mode (GCM) of operation. In International Con-
ference on Cryptology in India. Springer, 343–355.

[15] Microsoft. [n.d.]. https://docs.microsoft.com/en-us/windows/security/
information-protection/bitlocker/bitlocker-overview Accessed: 2022-
03-20.

[16] Brož Milan. 2018. LUKS2 On-Disk Format Specification. https:
//gitlab.com/cryptsetup/LUKS2-docs

[17] Thomas H. Ptacek. 2014. You Don’t Want XTS. https://sockpuppet.
org/blog/2014/04/30/you-dont-want-xts/. (Retrieved Feb. 2021).

[18] Phillip Rogaway. 2004. Efficient Instantiations of Tweakable Block-
ciphers and Refinements to Modes OCB and PMAC. In Advances in
Cryptology - ASIACRYPT 2004, Pil Joong Lee (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 16–31.

[19] Ceph website. [n.d.]. https://docs.ceph.com/en/latest/radosgw/
encryption/ Accessed: 2022-03-20.

[20] fio website. [n.d.]. https://fio.readthedocs.io/ Accessed: 2022-03-15.
[21] RocksDB website. [n.d.]. http://rocksdb.org/ Accessed: 2022-03-15.
[22] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and

Carlos Maltzahn. 2006. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th symposium on Operating systems
design and implementation. 307–320.

[23] NVM Express Workgroup. 2014. NVM Express® Base Specification
revision 1.2. https://nvmexpress.org/developers/nvme-specification/

[24] Qionglu Zhang, Shijie Jia, Junlin He, Xinyi Zhao, Luning Xia, Yingjiao
Niu, and Jiwu Jing. 2020. Ensuring Data Confidentiality with a Se-
cure XTS-AES Design in Flash Translation Layer. In 2020 IEEE 5th
International Conference on Cloud Computing and Big Data Analytics
(ICCCBDA). 289–294. https://doi.org/10.1109/ICCCBDA49378.2020.
9095700

14

https://support.apple.com/en-us/HT204837
https://source.android.com/security/encryption
https://source.android.com/security/encryption
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
https://doi.org/10.1109/IEEESTD.2021.9457235
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://gitlab.com/cryptsetup/LUKS2-docs
https://gitlab.com/cryptsetup/LUKS2-docs
https://sockpuppet.org/blog/2014/04/30/you-dont-want-xts/
https://sockpuppet.org/blog/2014/04/30/you-dont-want-xts/
https://docs.ceph.com/en/latest/radosgw/encryption/
https://docs.ceph.com/en/latest/radosgw/encryption/
https://fio.readthedocs.io/
http://rocksdb.org/
https://nvmexpress.org/developers/nvme-specification/
https://doi.org/10.1109/ICCCBDA49378.2020.9095700
https://doi.org/10.1109/ICCCBDA49378.2020.9095700

	Abstract
	1 Introduction
	2 Background
	2.1 AES-XTS and its Shortcomings
	2.2 Possible Mitigations
	2.3 Related Work
	2.4 Ceph RBD Encryption

	3 Implementation and Evaluation
	3.1 Design Choices for Storing Per-Sector Information
	3.2 Test Environment
	3.3 Results

	4 Conclusions and Looking Forward
	Acknowledgments
	References

