
ScalaRAID: Optimizing Linux Software RAID System
for Next-Generation Storage

Shushu Yi1,2, Yanning Yang3, Yunxiao Tang1, Zixuan Zhou1, Junzhe Li1, Chen Yue3
Myoungsoo Jung4, Jie Zhang1

Computer Hardware and System Evolution Laboratory,
Peking University1, Nanjing University2,

Beijing University of Posts and Telecommunications3, KAIST4

ABSTRACT
RAID has been widely adopted to enhance the performance,
capacity, and reliability of the existing storage systems. How-
ever, we observe that the Linux software RAID (mdraid) suf-
fers from its poor implementation of the lock mechanism. To
address this, we propose ScalaRAID, which refines the role
domain of locks and designs a new data structure to prevent
different threads from preempting the RAID resources. By do-
ing so, ScalaRAID can maximize the thread-level parallelism
and reduce the time consumption of I/O request handling.
Our evaluation results reveal that ScalaRAID can improve
throughput by 89.4% while decreasing 99.99𝑡ℎ percentile la-
tency by 85.4% compared to mdraid.

CCS CONCEPTS
• Information systems→ RAID; • Software and its en-
gineering → Secondary storage.

KEYWORDS
Solid State Drive, RAID, Operating System, Lock

1 INTRODUCTION
Over the past years, solid state drives (SSDs) have become the
dominant storagemedia, which are widely adopted in diverse
computing domains including datacenters [4, 22, 27, 29, 31],
high-performance computers [24, 32, 34], and portable de-
vices [3]. While SSDs exhibit their superiority over the tra-
ditional storage media in terms of throughput, latency, and
power efficiency, they, unfortunately, suffer from the low re-
liability imposed by the NAND flash intrinsics [6, 11, 12] and
the limited storage capacity. Redundant Array of Inexpensive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539740

Disks (RAID) technology [30] is a cost-efficient approach to
address the aforementioned challenges. Specifically, RAID
can mitigate the penalty of flash errors by introducing data
redundancy. To extend the capacity of SSD storage in scale,
RAID also groups multiple SSD devices as an array, which
can deliver a uniform large storage space.
However, as the SSD technology has experienced signif-

icant technology shifts, the RAID technology is becoming
the performance bottleneck of the future storage system
that employs the next-generation SSDs. To be precise, the
emerging PCIe 4.0 SSDs can increase their I/O bandwidth
capability up to 7 GB/s [2, 33]. In contrast, most hardware
RAID engines are designed for low-speed storage interface
(i.e., SATA), whose maximum throughput is limited to 500
MB/s [1]. Linux software RAID, referred to as mdraid [26],
can break the performance bound by employing multiple
CPU threads to prepare the parity data simultaneously. How-
ever, this approach can impose significant software over-
heads, which in turn introduces huge burden to the CPU.
Consequently, the performance of mdraid, unfortunately,
cannot scale as the number of CPU threads and SSD devices
increase. Specifically, we set up an experiment to analyze
the execution time breakdown of the storage software stack.
Our evaluation results reveal that the overheads of the lock
mechanism account for 30.8% of the total software delays (cf.
Section 2.2 for more details). One may consider to remove
the lock mechanism from the mdraid. However, the locks
play a critical role in guaranteeing crash consistency and
taking charge of data management.
Tackling the aforementioned challenges, we propose

ScalaRAID, a Scalable RAID system to aggregate the perfor-
mance and capacity of the next-generation storage devices
with low CPU cost 1. Specifically, we employ multiple fine-
grained locks rather than the traditional coarse-grained lock
to protect the critical resources in mdraid, which can min-
imize the lock preemption. We also redesign the key data
structures in RAID to mitigate the overheads imposed by the
existing crash consistency mechanism. Furthermore, we scat-
ter the entire address space in RAID thereby preventing the
collision in metadata updates. With these proposed designs,
ScalaRAID can maximize thread-level parallelism and reduce

1ScalaRAID is available at https://github.com/ChaseLab-PKU/ScalaRAID.

119

https://doi.org/10.1145/3538643.3539740
https://github.com/ChaseLab-PKU/ScalaRAID

HotStorage ’22, June 27–28, 2022, Virtual Event, USA S. Yi et al.

CPU suspension time caused by lock contention. Compared
to the mdraid design in the Linux system, ScalaRAID im-
proves the overall storage throughput by 89.4% and decreases
the 99.99𝑡ℎ percentile I/O latency by 85.4%.

The main contributions of this work can be summarized
as follows:
• Deep analysis of mdraid: We observe that a mdraid sys-
tem that consists of multiple high-performance SSDs can
only achieve similar performance as a single SSD. This is
because mdraid cannot fully utilize the striping mechanism
to improve the storage bandwidth. We then dig deeply into
the CPU utilization and the software overheads. Our evalu-
ation results reveal that the lock mechanism consumes up
to 78× more CPU power than the parity computation. In
other words, the root cause of the performance degradation
becomes the lock mechanism rather than RAID’s parity com-
putation. This is because mdraid usually employs multiple
CPU threads to accelerate the request processing. However,
the CPU threads are serialized in front of the locks. To the
best of our knowledge, this is the first study of lock issues in
mdraid when one uses it with next-generation SSDs.
• Fine-grained lock mechanism: mdraid employs coarse-
grained locks to manage the storage resources and guarantee
crash consistency. The lock contention is not a serious issue
when running a few CPU threads to serve software RAID ser-
vices. However, the next-generation storage requires more
CPU threads to process I/O requests simultaneously thereby
maximizing the I/O bandwidth. This in turn imposes great
burden to the existing lock mechanism. To address this, we
propose a parallelism-aware lock mechanism. In particular,
we refine the scope of lock management and increase the
number of locks with minor overheads. We further split the
storage resources into multiple segments and assign a fine-
grained lock to each segment. This allows different threads
to access the segments in parallel. Our lock mechanism im-
proves the throughput by 39.9%, compared to mdraid.
• Customized data structure to avoid collisions:While our pro-
posed lock mechanism allows parallel accesses to different
segments, CPU threads can still be blocked from accessing
the same segment owing to ill-designed data structure. To
address this, we redesign the data structure in mdraid to
reap the benefits from thread-level parallelism. Specifically,
we customize different types of lock structures to manage
data and metadata by carefully considering their own char-
acteristics. We further scatter each segment across the entire
address range in the storage such that CPU threads can be in-
terleaved to access different segments. These designs further
improve the performance by 34.8%, on average, compared to
the existing software RAID system.

2 BACKGROUND AND MOTIVATION
2.1 RAID and Its Implementations
Array basics. Redundant Array of Inexpensive Disks (RAID)
is a storage technology that combines many disks into one

������

�������

��	

�������

����

��

�����

�������

���

��

�	 �

������ �����	

�	

�������

��

��������

�������

�����

Figure 1: Data organization in a RAID system.

����

������

�	
��	

�����

����

�����
����
������

� � �

� � ���

� ! "��

�

�

�

!

�

"

����

���
�#�

$�%��

	
�&�

'�&���

��

�����

(�����
���

)��	

��
�����*��

+������

��
���

)�������

��
���

��,���

��

��
���

��'�� ��'�� ��'��

!�

�

�,

!,

�

��
*���

�����

-��
�

�����

����	
��

%���
��

����

��
���

��
���

Figure 2: Write path of RAID 5 in mdraid layer
.

logical unit to satisfy the requirements of capacity, perfor-
mance and reliability [13]. Figure 1 shows a RAID 5 system
with three member disks. Chunks are the basic data units
to manage all the member disks, whose sizes are typically
64 KB. Chunks of the same offset in different member disks
are grouped as stripe chunk (S-Chunk). For a RAID 5 system
of N disks, each S-Chunk has N-1 data chunks and 1 parity
chunk. The data in the parity chunk is calculated by XORing
the remaining N-1 data chunks. When one member disk fails,
the missing chunk located in the failed member disk can be
recovered by XORing the remaining chunks in the S-Chunk.
Therefore, RAID 5 can deliver reliability guarantee. Note that
this paper mainly focuses on RAID 5. Our designs can also
be applied to other RAID levels (e.g., RAID 6) and schemes if
they suffer from the same lock mechanism and ill-designed
data structures as what RAID 5 in mdraid has. For simplicity,
we use the terms “RAID” and “RAID 5” interchangeably.
Software RAID in Linux kernel. mdraid manages the un-
derlying block devices (e.g., SSDs) meanwhile providing the
I/O services to the upper-level filesystem. Figure 2 shows the
write path of RAID 5 in the mdraid layer [26]. The minimum
data unit for RAID operations is stripe unit (S-Unit), whose
typical size is 4 KB. S-Units of the same address offset in all
member disks are grouped as stripe head (S-Head, cf. Figure
1), which are managed by Stripe data structure in mdraid
(cf. Figure 2). Stripe records the states of S-Head (e.g., read
waiting and computation completed) and acts as the cache of
S-Head. The write procedure in mdraid can be described as

120

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage HotStorage ’22, June 27–28, 2022, Virtual Event, USA

52
41

52
40

52
40

52
43

52
3624

15

33
45 50

53

51
69

52
18

3 5 9 17 33
0

1k
2k
3k
4k
5k
6k
7k

The number of CPU threadsBa
nd

w
id

th
 (M

B/
s) Single SSD 2+1 SSDs

(a) Bandwidth of sequence write.
Single SSD

2+1 SSDs
4+1 SSDs

6+1 SSDs0.6
0.9
1.2
1.5
1.8

N
or

m
.b

an
dw

id
th

 seq.write (128K) seq.write (full stripe)
 rand.write (128K) rand.write (full stripe)

(b) Bandwidth variation with
the number of SSDs.

3 5 9 17 33
0%
10%
20%
30%
40%

O
ve
rh
ea

ds

The number of CPU threads

 Submit bio Mem copy XOR
 Stripe lock Counter lock

(c) Overhead breakdown with
different number of threads.

2+1 SSDs
4+1 SSDs

6+1 SSDs0%
10%
20%
30%
40%

O
ve
rh
ea

ds

 Submit bio Mem copy XOR
 Stripe lock Counter lock

(d) Overhead breakdown with
different number of SSDs.

Figure 3: Performance and overhead analysis of mdraid.
follows. When a write request arrives in mdraid, it will firstly
be sliced into S-Units (1). Next, to prepare for data process-
ing, S-Units of the same offset then request for a Stripe via
get_active_stripe function (2). If the number of S-Units in
a Stripe does not equal to the length of an S-Head, a read
request will be sent to the underlying block device for the
missing S-Unit (3a). Afterwards, the CPU threads calculate
the parity codes (3b). Once the calculation completes, the
S-Head will be sent to the storage device (4a) and finally
the Stripe will be recycled (4b). To prevent multiple threads
from competing for the same Stripe, Linux uses few global
locks to guarantee the exclusive allocation of the Stripes.
Crash consistency. In addition to the locks for Stripe alloca-
tion, mdraid requires extra locks to enable crash consistency.
Specifically, when a power failure occurs in the process of
chunk write, the chunk being written to the storage becomes
an uncertain value. During system reboot, mdraid is unable
to locate and fix the write faults, which shatters the fault
tolerance of RAID. This phenomenon is referred to as write
hole [19]. To address this issue, mdraid employs a bitmap
mechanism to guarantee the crash consistency. In detail, a
group of S-Heads are clustered as stripe block (S-Block, cf.
Figure 1). An S-Block typically covers address range of 64
MB on each disk. mdraid maintains a table of counters, each
mapping to a specific S-Block. The counter records the num-
ber of S-Heads in an S-Block that are being written. This
table will be flushed back to the member disks in batches
by a daemon process and stored as a bitmap. During the
recovery procedure, we can scan the bitmap to figure out
which S-Block should be recalculated to synchronize data
and parity. mdraid employs a single global lock to avoid the
competition in counter updates.

2.2 Motivation
To better understand the impacts of mdraid on the system
performance, we perform an experiment on the real PCIe 4.0
SSD arrays (cf. Section 4.1 for experiment details). Figure 3a
shows the write throughput of RAID that consists of three
SSDs. We vary the CPU threads from 3 to 33. The write band-
width of RAID increases as we put more CPU threads for
computation. However, it cannot exceed the bandwidth of a
single SSD. Figure 3b shows the peak performance of RAID

that employs different numbers of member SSDs. Increas-
ing the number of member SSDs can slightly improve the
overall throughput. For example, mdraid of 7 member SSDs
only exceeds the performance of a single SSD by 63.5%. This
indicates that mdraid cannot fully reap the benefits from
the striping mechanism. We further analyze the CPU cost
of mdraid with different numbers of threads and member
SSDs, which is shown in Figure 3c and 3d. We categorize
the cost into Counter lock, Stripe lock, Submit bio, Mem
copy and XOR. Counter lock and Stripe lock represent
for the time consumed by the lock procedure of counters and
Stripes, respectively. Mem copy and Submit bio are the time
of bio preparation and submission to drivers. Lastly, XOR is
the time of parity computation. The overheads of the lock
mechanisms (including Counter lock and Stripe lock)
only account for 3.5% of the total I/O access time when em-
ploying 3 CPU threads. Nevertheless, the overheads reach
30.8% when using 33 threads, which is 78 times more than
XOR. In this work, we primarily focus on mitigating the write
penalty imposed by the lock mechanism. Note that the lock
mechanism imposes near-zero overheads for read I/O re-
quests as read request handling is slightly different from the
write one. This is because, in most cases, read requests can
be easily handled by chunk_aligned_read() function without
using the aforementioned locks.

3 SCALARAID DESIGN
To mitigate the aforementioned overheads, ScalaRAID man-
ages the Stripes and the counter table with multiple fine-
grained locks (§3.1). ScalaRAID further prevents multiple
CPU threads from contending for the same data by employ-
ing a new data structure to shuffle these accesses (§3.2).

3.1 Multiple Locks, Not One
Owing to the constraints of DRAM capacity, the number
of Stripes in mdraid is usually limited (e.g., 256). Therefore,
mdraid introduces a lock mechanism to prevent multiple
CPU threads from preempting the Stripe allocation. How-
ever, the rudimentary lock mechanism in mdraid leads to
a large number of CPU threads blocked in the process of
requesting Stripes. This introduces the penalty of Stripe lock.
Figure 4a shows our solution to resolve the lock issues. Our

121

HotStorage ’22, June 27–28, 2022, Virtual Event, USA S. Yi et al.

��

��

�� ��

��

��

��

��

��

��

��

��

��

�����	
�
�		

���	
�
�		

����

��
��� ��
���

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

��

��

��
��� ��
��

��
��� ��
���

(a) Optimization of Stripe lock.

��

��
��������

�	

������
�����

�� �	 ��

��

��
��������

�	

������
�����

��

�	
��

��

	�

��

��

	�

��

��

���	

	��	

��

��

�������
��������
��������

(b) Optimization of counter lock.

��������

�������	

�������

��	

�	

�	

��

�

�

�

�	 ��

�	

��

������

�������

����������� ��

����

���

���

������������ !�������!�����

�������

�������

��������

(c) Optimization of D-Block.
Figure 4: Design details of ScalaRAID.

key insight is that we can employ multiple locks to man-
age different Stripes separately. Specifically, we increase the
number of Stripe locks and interleave CPU threads to access
different Stripe locks by leveraging a hash algorithm. This
hash algorithm takes targeted page number 𝑝 as input and
outputs 𝑝&(𝑠 − 1), where 𝑠 and "&" are the number of Stripe
locks and the bit-wise AND operation, respectively. Our de-
sign allows different threads (cf. T1 and T2 in Figure 4a) to
run in parallel and improves the overall RAID throughput
while reducing request completion time in an I/O write burst
by omitting the collision penalty.
Unfortunately, simply increasing the number of Stripe

locks cannot thoroughly resolve the lock issues. Specifically,
once a Stripe has been successfully acquired, the CPU thread
continues to update the values in the counter table. Asmdraid
employs only a single spin lock to manage all the accesses to
the counter table, all the CPU threads should be serialized in
front of the counter table. As shown in Figure 4b, when both
CPU threads T1 and T2 need to modify the counter table, they
compete for the spin lock. T2 has to wait until T1 finishes its
access (1a and 1b) and releases the lock. To break the bound
of serialization, we propose a multi-lock counter table. Our
key insight is that different CPU threads may access different
counters separately. Thus, our ScalaRAID splits the counter
table into multiple segments and assigns a dedicated lock
to each segment. The counters in the counter table, which
map to neighboring S-Blocks, are interleaved across different
segments. Thus, CPU threads that target different segments
can acquire the locks simultaneously, thereby improving the
thread-level parallelism. Figure 4b shows an example of our
design (i.e., red arrows). CPU threads T1 and T2 can acquire
different counter locks and update the counters in parallel.
It is worth noting that the counter lock is also used to

protect themetadata update of the counter table. For example,
when we need to shrink the storage space of a RAID system,
the corresponding entries within the counter table should
be deleted (cf. T3 in Figure 4b). However, modifying both the
counter values and their metadata simultaneously can result
in memory faults. We observe that mdraid rarely updates the
metadata of the counter table. Thus, we employ a readers-
writer lock mechanism [15] to protect the metadata, which
can reap the most benefits from this condition. Specifically,
the reader locks can be owned by multiple CPU threads
while the writer lock is exclusively held by a single thread.

Before updating the metadata, the CPU thread acquires the
writer lock (cf. 3a in Figure 4b). Otherwise, if the CPU threads
need to revise the counter values, they apply for the reader
locks and the counter locks successively. Note that our work
concentrates on mitigating the lock overheads (e.g., counter
locks used by the bitmap mechanism). Our design of the fine-
grained locks does not affect the correctness of the existing
crash consistency mechanism.

3.2 Distributed Blocks, Not Centralized
In MD, S-Block by default covers an address range of 64
MB. In other word, a counter needs to record and manage
such a wide range of address space. This design is optimized
for large-size write requests but may harm small-size write
requests. Figure 4c shows an example. Let’s suppose that
T1 and T2 need to modify different S-Heads A and B in the
same S-Block. They then contend for modifying the same
counter, which results in hanging up T2. Note that our multi-
lock counter table allows multiple threads to access different
counters simultaneously. It cannot prevent the congestion
that targets the same counter.
One possible solution is to reduce the cover range of S-

Blocks thereby reducing the chances of access collisions.
For example, we can adjust an S-Block to cover only a sin-
gle S-Head (4KB). However, as a trade-off, such design can
introduce huge memory consumption in the kernel. Specif-
ically, mdraid needs to allocate a 2-byte memory space for
each counter. RAID of multiple 2TB SSDs requires 1 GB
memory space to accommodate the counter table, which
imposes huge overheads to the system. An alternative so-
lution is to place the counter table in the SSDs. mdraid can
allocate memory space to buffer the counter table via mmap
[28]. However, this in turn introduces the overheads of page
faults [9]. Considering that random writes usually modify
different counters frequently, frequent page faults can signifi-
cantly increase the tail latency of write completion. To tackle
the challenges imposed by the traditional S-Block design,
we propose a new data structure, called Distributed Block
(D-Block), which is shown in Figure 4c. D-Block consists
of multiple S-Heads. In contrast to S-Block, the S-Heads in
D-Block are spread across different locations in the SSDs
via a configurable hash function rather than mapping to
a continuous SSD space. The default hash function takes
the offset of S-Head as input and outputs ⌈log(𝑆𝑖𝑧𝑒/𝐷𝑠𝑖𝑧𝑒)⌉

122

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage HotStorage ’22, June 27–28, 2022, Virtual Event, USA

Number of SSDs 2+1 4+1 6+1
full stripe 128KB 256KB 384KB

Table 1: Full stripe size of different RAID.
Hardware Software Data structure

CPU
Intel Xeon 5320 OS Ubuntu

20.02
S-Head 4KB

1 x 26 cores/2.2 GHz S-Chunk 64KB
with hyperthreading Linux

kernel v5.11.0 S-Block 64MB

Mem. Samsung D-Block 64MB
8 x 16GB/DDR4 Test tools Number of locks

SSD
Samsung 980 Pro FIO v3.16 OrigRAID 8 Stripe lck./1 counter lck.
up to 7 x 1TB Perf v5.11 HemiRAID 128 Stripe lck./1 counter lck.

R/W: 7000/5000 MB/s Mdadm v4.1 ScalaRAID 128 Stripe lck./16,384 counter lck.

Table 2: System configurations.
rightmost bit(s) of the input offset, where 𝑆𝑖𝑧𝑒 and 𝐷𝑠𝑖𝑧𝑒 are
the capacity of member disk and cover ranges of D-Block, re-
spectively. Thus, S-Heads in the same D-Block are dispersed
uniformly across the whole space. While a D-Block main-
tains a cover range of 64 MB, sequential write requests are
shuffled to access different D-Blocks. By doing so, ScalaRAID
can effectively reduce the counter preemption.

4 EVALUATION
4.1 Experimental Setup
Methodology.We conduct the experiments on a server that
consists of a 26-core processor and 128 GB DDR4 memory.
We employ Linux v5.11.0 [23] as the default kernel in this
evaluation.We also use mdadm v4.1 [25] to create RAID from
up to seven 1TB Samsung 980Pro SSDs [2]. In this experiment,
we use 2+1 SSDs (i.e., 3 SSDs, "n+1" is the usual expression
to emphasize the parity) as default. We use FIO v3.16 [5] to
evaluate the performance of different RAID systems. In FIO,
We set the iodepth to 32 and employ an asynchronous I/O
engine (libaio [7]). Besides, we use Perf v5.11 [17] to record
the CPU usage of the OS software stack. We configure the
I/O size as 4 KB in the latency evaluation while the I/O sizes
are adjusted to full stripe in bandwidth evaluation (cf. Table
1). It is worth noting that we employ a single thread as the
mdraid daemon (cf. Section 2.1). Additionally, we employ the
same number of worker threads as FIO threads to maximize
the performance of RAID, which is inspired by [21]. Worker
threads do the same work as daemon (e.g., submitting bio to
member disk). All the daemon threads, worker threads, and
FIO threads are counted in the following evaluation. Table 2
lists the important configurations in our experiments.
RAID systems.We implement three different RAID systems.
(1) OrigRAID: adopting the default configurations of mdraid;
(2) HemiRAID: based on OrigRAID, we increase the number
of Stripe locks to 128; (3) ScalaRAID: based on HemiRAID,
we equip every counter with a counter lock (cf. Section 3.1)
and employ our D-Block (cf. Section 3.2). Considering that
the evaluated RAID system consists of several 1TB SSDs,
ScalaRAID totally requires 16,384 counter locks. We summa-
rize the RAID system configurations in Table 2.

4.2 Performance Comparison
Bandwidth. Figures 5a and 5b show full stripe sequential
write and read bandwidths of the evaluated RAID systems,

3 5 9 17 33
0
2
4
6
8

10

The number of CPU threads

Ba
nd

w
id

th
 (G

B/
s)

 OrigRAID HemiRAID ScalaRAID

(a) Sequential write.

3 5 9 17 33
0
5

10
15
20
25

The number of CPU threads

Ba
nd

w
id

th
 (G

B/
s)

 OrigRAID HemiRAID ScalaRAID

(b) Sequential read.

63
90

63
25

63
25

63
25

65
20

63
25

28
68 92

2

10
04

2+1 SSDs
4+1 SSDs

6+1 SSDs0k
2k
4k
6k
8k

Ta
il

 la
te

nc
y

(
s)

 OrigRAID HemiRAID ScalaRAID

(c) Sequential write.

33
4

33
4

33
4

33
4

33
4

33
8

33
4

33
4

33
0

2+1 SSDs
4+1 SSDs

6+1 SSDs0

100

200

300

400

Ta
il

 la
te

nc
y

(
s)

 OrigRAID HemiRAID ScalaRAID

(d) Sequential read.
Figure 5: Performance comparison.

respectively. As the number of CPU threads increases, the
write bandwidth of OrigRAID gradually increases. Never-
theless, such bandwidth saturates when the number of CPU
threads reaches 9. HemiRAID outperforms OrigRAID by 30.8%
and 39.9% when using 17 and 33 threads, respectively. This
is because HemiRAID allows more threads to get Stripe simul-
taneously and thus processes multiple requests in parallel.
ScalaRAID can further improve the bandwidth by 34.8%, on
average, compared to HemiRAID. This is because ScalaRAID
resolves the counter lock contention thereby maximizing
the parallelism of request handling. On the other hand,
ScalaRAID achieves almost the same read performance as
OrigRAID and HemiRAID. This is because ScalaRAID has mi-
nor impact on the read path of mdraid (cf. Section 2.2).
Latency. Figures 5c and 5d illustrate the 99.99𝑡ℎ percentile
write and read latencies measured from different RAID sys-
tems, respectively. The 99.99𝑡ℎ percentile write latency of
OrigRAID and HemiRAID are close to each other. This is be-
cause although HemiRAID reduces the time for threads to
request Stripes, these threads are still blocked by the only
one counter lock (cf. Section 3.1). ScalaRAID, on the other
hand, increases the number of counter locks and employs
a new data structure (D-Block) to mitigate the contention
imposed by simultaneous counter updates. ScalaRAID also
prevents the CPU threads from being blocked by the Stripe,
which can minimize the software overheads. Therefore, the
99.99𝑡ℎ percentile latencies of ScalaRAID are reduced to only
44.9%, 14.6%, and 15.9% for RAIDs that consists of 2+1, 4+1,
and 6+1 member SSDs, respectively. In contrast, ScalaRAID,
HemiRAID, and OrigRAID have similar 99.99𝑡ℎ percentile read
latency. The subtle performance differences can be consid-
ered as an experiment noise. This performance behavior is
similar to our observation in the sequential read throughput.

4.3 Scalability and Overhead Analysis
Scalability.We further measure the performance scalabil-
ity of different RAID systems by increasing the number of

123

HotStorage ’22, June 27–28, 2022, Virtual Event, USA S. Yi et al.

Single SSD
2+1 SSDs

4+1 SSDs
6+1 SSDs

1.0
1.5
2.0
2.5

N
or

m
al

iz
ed

 b
an

dw
id

th OrigRAID HemiRAID ScalaRAID

(a) Sequential write bandwidth.

Single SSD
2+1 SSDs

4+1 SSDs
6+1 SSDs

1.0
1.5
2.0
2.5

N
or

m
al

iz
ed

 b
an

dw
id

th OrigRAID HemiRAID ScalaRAID

(b) Random write bandwidth.

 OrigRAID
 HemiRAID
 ScalaRAID

(c) Software efficiency.

OrigRAID
HemiRAID

ScalaRAID0
400
800

1200

C
PU

 u
sa

ge
 (%

)

 Submit bio XOR Mem copy
 Stripe lock Other Counter lock

(d) CPU usage of RAID systems.

Figure 6: Analysis of scalability and CPU overheads.

member SSDs. The evaluation results are shown in Figures
6a and 6b. For full stripe sequential writes, the bandwidth
of ScalaRAID exceeds that of OrigRAID to 1.9×, 1.8×, and
1.6×, respectively, in 2+1, 4+1, and 6+1 SSDs. Compared
to OrigRAID, ScalaRAID also improves the performance by
67.2%, on average, for random full stripe writes. This is be-
cause ScalaRAID successfully parallelizes request handling
and thus reaps higher bandwidth from more drives. In other
word, ScalaRAID is more suitable for RAID consisting of a
large number of SSDs than OrigRAID.
Overheads. To demonstrate the efficiency of different RAID
systems, we measure the throughput under different CPU
usages. The collected statistics are shown in Figure 6c. Com-
pared to OrigRAID, HemiRAID and ScalaRAID can achieve
25.5% and 74.7% performance improvement under the same
CPU usages, respectively. This indicates that HemiRAID and
ScalaRAID can better utilize the CPU threads. Figure 6d
shows usage breakdown of the orange line in 6c. Compared
to OrigRAID, HemiRAID can reduce the Stripe lock overheads
by 97.8%. However, as HemiRAID employs only a simple lock
for the counter table, the counter lock becomes the perfor-
mance bottleneck. Compared to HemiRAID, ScalaRAID de-
signs new lock mechanisms for both the Stripes and the
counter table. Therefore, ScalaRAID reduces the time cost
of Stripe lock and counter lock to 3.2% and 0.5%, respectively.
Nevertheless, there still exist other sophisticated manage-
ment mechanisms in the storage software stack (e.g., the
complex state machines to manage Stripes), which impose
significant CPU overheads (84.6% in ScalaRAID). They be-
come the major obstacles in scaling up the performance of
ScalaRAID linearly. It is worth noting that ScalaRAID has
minor modification to the existing system software, which
exposes few memory cost. Specifically, as a single lock is 4
B, our proposed Stripe locks take up 512 B memory space.
For ScalaRAID with multiple 1 TB member SSDs, 16,384
counter locks consume 64 KB memory space in total, which
is negligible compared to a 128 GB memory system.

5 RELATEDWORK
Crash consistency. In addition to the bitmap mechanism,
there exist multiple approaches to guarantee crash consis-
tency in RAID. [18] leverages journaling to record the trans-
actions of RAID. Once an unclean shutdown [10] occurs, [18]

replays these transactions to restore the data. [8] protects
crash consistency by employing the Copy-on-Write semantic.
As this design does not modify data in place, [8] can simply
restore the parity after failures. Among the aforementioned
solutions, the bitmap mechanism exhibits the best perfor-
mance in terms of bandwidth and latency. Therefore, we
select the bitmap mechanism as the baseline of ScalaRAID.
RAID optimization.Multiple prior works [14, 16, 20, 24]
focus on mitigating the penalty of updating parity codes in
RAID. Specifically, [16, 24] propose accelerating the parity
update by offloading the computation tasks to GPUs. [14, 20]
utilize NVRAM to cache data. It postpones the parity update
until the cached data can be merged into full stripe. By doing
so, it can eliminate the read overheads before parity com-
putation. In contrast, ScalaRAID addresses the performance
issues imposed by the lockmechanism in software RAID. Our
design does not require any hardwaremodification. Note that
ScalaRAID is orthogonal to the aforementioned approaches.

6 CONCLUSION
The lock mechanism has become the performance bottle-
neck of mdraid. In this work, we propose ScalaRAID, which
achieves scalable performance of the storage management
software by relaxing the constraints imposed by the lock
mechanism. ScalaRAID successfully aggregates the perfor-
mance and capacity of the next-generation storage with low
CPU cost.

ACKNOWLEDGEMENT
The authors thank Prof. Guangyan Zhang of Tsinghua
University for shepherding their paper. This research is
mainly supported by Peking University start-up pack-
age (7100603645). Dr. Jung is in part supported by NRF
2021R1AC4001773 and IITP 2021-0-00524 & 2022-0-00117,
KAIST IDEC & Start-up (G01190015), Samsung HiPHER, and
Samsung Research Grant (G01200447). Jie Zhang is the cor-
responding author.

124

ScalaRAID: Optimizing Linux Software RAID System for Next-Generation Storage HotStorage ’22, June 27–28, 2022, Virtual Event, USA

REFERENCES
[1] Samsung 870EVO. 2021. https://www.samsung.com/us/computing/

memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-
77e250b-am/.

[2] Samsung 980Pro. 2020. https://www.samsung.com/us/computing/
memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-
mz-v8p1t0b-am/.

[3] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark
Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for {SSD}
Performance. In 2008 USENIX Annual Technical Conference (USENIX
ATC 08).

[4] David G Andersen and Steven Swanson. 2010. Rethinking flash in the
data center. IEEE micro 30, 04 (2010), 52–54.

[5] Jens Axboe. 2019. Flexible I/O Tester. https://github.com/axboe/fio.
[6] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia

Malkhi. 2010. Differential raid: Rethinking raid for ssd reliability. ACM
Transactions on Storage (TOS) 6, 2 (2010), 1–22.

[7] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty, and Janet Mor-
gan. 2003. Asynchronous I/O support in Linux 2.5. In Proceedings of
the Linux Symposium. 371–386.

[8] Jeff Bonwick and Bill Moore. 2008. ZFS: The Last Word in File
Systems. https://www.snia.org/sites/default/orig/sdc_archives/2008_
presentations/monday/JeffBonwick-BillMoore_ZFS.pdf.

[9] Daniel P Bovet andMarco Cesati. 2005. Understanding the Linux Kernel:
from I/O ports to process management. " O’Reilly Media, Inc.".

[10] Neil Brown. 2001. Software RAID in 2.4. In Proceedings of linux. conf.
au, Sydney, Australia.

[11] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur Mutlu. 2015.
Data retention in MLC NAND flash memory: Characterization, opti-
mization, and recovery. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 551–563.

[12] Feng Chen, David A Koufaty, and Xiaodong Zhang. 2009. Understand-
ing intrinsic characteristics and system implications of flash memory
based solid state drives. ACM SIGMETRICS Performance Evaluation
Review 37, 1 (2009), 181–192.

[13] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and
David A Patterson. 1994. RAID: High-performance, reliable secondary
storage. ACM Computing Surveys (CSUR) 26, 2 (1994), 145–185.

[14] John Colgrove, John DDavis, JohnHayes, Ethan LMiller, Cary Sandvig,
Russell Sears, Ari Tamches, Neil Vachharajani, and Feng Wang. 2015.
Purity: Building fast, highly-available enterprise flash storage from
commodity components. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 1683–1694.

[15] Pierre-Jacques Courtois, Frans Heymans, and David Lorge Parnas.
1971. Concurrent control with “readers” and “writers”. Commun. ACM
14, 10 (1971), 667–668.

[16] Matthew L Curry, H Lee Ward, Anthony Skjellum, and Ron Brightwell.
2010. A lightweight, gpu-based software raid system. In 2010 39th
International Conference on Parallel Processing. IEEE, 565–572.

[17] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides
from Linux Kongress, Vol. 18. 1–42.

[18] Timothy E Denehy, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2005. Journal-guided Resynchronization for Software RAID..
In FAST.

[19] Brian Hickmann and Kynan Shook. 2007. ZFS and RAID-Z: The Über-
FS? University of Wisconsin–Madison (2007).

[20] Soojun Im and Dongkun Shin. 2010. Flash-aware RAID techniques
for dependable and high-performance flash memory SSD. IEEE Trans.
Comput. 60, 1 (2010), 80–92.

[21] Nikolaus Jeremic, Helge Parzyjegla, and Gero Muehl. 2016. Improv-
ing random write performance in homogeneous and heterogeneous
erasure-coded drive arrays. ACM SIGAPP Applied Computing Review
15, 4 (2016), 31–53.

[22] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu
Wei, Zhiyue Li, and Weimin Zheng. 2021. {FusionRAID}: Achieving

Consistent Low Latency for Commodity {SSD} Arrays. In 19th USENIX
Conference on File and Storage Technologies (FAST 21). 355–370.

[23] Linux kernel v5.11.0. 2021. https://www.kernel.org/doc/html/v5.11/.
[24] Aleksandr Khasymski, M Mustafa Rafique, Ali R Butt, Sudharshan S

Vazhkudai, and Dimitrios S Nikolopoulos. 2012. On the use of GPUs in
realizing cost-effective distributed RAID. In 2012 IEEE 20th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE, 469–478.

[25] Mdadm. 2018. http://www.kernel.org/pub/linux/utils/raid/mdadm/.
[26] mdraid layer. 2022. https://github.com/torvalds/linux/tree/master/

drivers/md.
[27] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A large-

scale study of flash memory failures in the field. ACM SIGMETRICS
Performance Evaluation Review 43, 1 (2015), 177–190.

[28] mmap. 2021. https://man7.org/linux/man-pages/man2/mmap.2.html.
[29] Iyswarya Narayanan, DiWang, Myeongjae Jeon, Bikash Sharma, Laura

Caulfield, Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine
Khessib, and Kushagra Vaid. 2016. SSD failures in datacenters: What?
when? andwhy?. In Proceedings of the 9th ACM International on Systems
and Storage Conference. 1–11.

[30] David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for
redundant arrays of inexpensive disks (RAID). In Proceedings of the
1988 ACM SIGMOD international conference on Management of data.
109–116.

[31] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash
reliability in production: The expected and the unexpected. In 14th
USENIX Conference on File and Storage Technologies (FAST 16). 67–80.

[32] Xuanhua Shi, Ming Li, Wei Liu, Hai Jin, Chen Yu, and Yong Chen. 2017.
Ssdup: a traffic-aware ssd burst buffer for hpc systems. In Proceedings
of the international conference on supercomputing. 1–10.

[33] Western Digital Black SN850. 2021. https://www.westerndigital.com/
products/internal-drives/wd-black-sn850-nvme-ssd.

[34] Greg Wong. 2013. SSD market overview. In Inside Solid State Drives
(SSDs). Springer, 1–17.

125

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-77e250b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-77e250b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/870-evo-sata-2-5-ssd-250gb-mz-77e250b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://gith ub.com/axboe/fio
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.kernel.org/doc/html/v5.11/
http://www.kernel.org/pub/linux/utils/raid/mdadm/
https://github.com/torvalds/linux/tree/master/drivers/md
https://github.com/torvalds/linux/tree/master/drivers/md
https://man7.org/linux/man-pages/man2/mmap.2.html
https://www.westerndigital.com/products/internal-drives/wd-black-sn850-nvme-ssd
https://www.westerndigital.com/products/internal-drives/wd-black-sn850-nvme-ssd

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RAID and Its Implementations
	2.2 Motivation

	3 ScalaRAID Design
	3.1 Multiple Locks, Not One
	3.2 Distributed Blocks, Not Centralized

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Scalability and Overhead Analysis

	5 Related Work
	6 Conclusion
	References

