
Infusing Pub-Sub Storage with Transactions

Liana V. Rodriguez† John Bent‡ Tim Shaffer‡ Raju Rangaswami†
† Florida International University ‡ Seagate Technology

ABSTRACT
The need to support new features in existing storage sys-
tems is an ongoing concern for storage developers. So is the
desire to develop next generation storage systems that can
adopt newly developed feature improvements with relative
ease. Extending storage systems is challenging because of
the inherent complexity of their codebases and the need to
ensure that the storage state does not become corrupt or
inconsistent when enabling new features. In this work, we
examine a new storage architecture, FDMI, that uses the
well-established publish-subscribe model for extending the
feature set of a host storage system using plugins. A central
mechanism in FDMI is transactional coupling. With trans-
actional coupling, the subscribed plugin can either create
new transactions that execute asynchronously following the
successful completion of the precipitating event or can par-
ticipate in the pending transaction and control whether the
precipitating event itself will or will not be committed. We
further create a classification of transactional mechanisms
as well as possible desired plugin functionality and explore
the matrix of these two classifications to create a new model
for faster, safer distributed storage development.

ACM Reference Format:
Liana V. Rodriguez† John Bent‡ Tim Shaffer‡ Raju
Rangaswami†, † Florida International University ‡ Seagate
Technology . 2022. Infusing Pub-Sub Storage with Transactions. In
Proceedings of 14th ACM Workshop on Hot Topics in Storage and
File Systems (HotStorage’22). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.475/1234.5678

1 INTRODUCTION
Storage systems are at the intersection of multiple technol-
ogy trends. Their designs are expected to evolve to address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage’22, July 27-28, 2022, virtual conference
© 2022 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/1234.5678

Architecture Storage
access

Transactional
guarantees

No I/O
Amp

Indep.
scale

Ease
dev.

Integrated ✓ ✓ ✓ ✗ ✗✗✗

Interposed I/O ✓ ✗ ✓ ✓∗ ✗

Conv. Pub-Sub ✗ ✗ ✗ ✓ ✓

FDMI ✓ ✓ ✗ ✓ ✓

Table 1: Properties of extensible storage system archi-
tectures. The ∗ indicates that some systems (e.g., ABLE [17]) are
exceptions, while "✗✗✗" indicates significantly higher level of said
property than a single "✗".

the massive growth in data volume from emerging applica-
tions and to adopt new advances from research and practice,
while also adapting to emerging storage device technology.
The large number of storage system improvements over the
years reflects this trend [3, 8, 16, 18, 21, 22, 34, 44, 46, 49].

Implementing new features today requires a tight coupling
with the storage system itself, requiring an in-depth under-
standing of its codebase, matching its performance proper-
ties, as well as ensuring that state changes do not introduce
corruption or inconsistency. The conventional approach to
introducing a new feature is integrated development which
requires developers with a deep understanding of the exist-
ing storage system codebase to natively integrate the new
feature. The drawbacks of this approach are the significant
development time, effort, required expertise, and an inability
to scale the resources used for the new feature independently.
Recognizing these limitations, researchers have created ex-
tensible harnessing for storage systems that allows new fea-
tures to be interposed within the storage stack without mod-
ifying the existing storage system [1, 4, 15, 17, 38, 50]. The
interposed feature layer, however, is in the storage I/O path
handling every client I/O request, and therefore must meet
stringent performance requirements. This in itself requires a
careful design to account for the interactions between the
feature layer and the storage system, increasing develop-
ment complexity. Furthermore, independent scaling is only
possible if the I/O traffic to the interposed feature layer gets
redirected to independent hardware resources which further
compromises the performance of storage client operations.

An alternative approach is a loosely coupled development
and deployment model wherein the storage feature is added
outside of the primary I/O path using a narrow API exposed
by the storage system. Our proposal, FDMI realizes this
alternate approach by extending the well-known publish-
subscribe communication architecture [10] to storage feature

23

https://doi.org/10.475/1234.5678
https://doi.org/10.475/1234.5678

HotStorage’22, July 27-28, 2022, virtual conference L. Rodriguez et al.

development. As our first contribution, we discuss how Sea-
gate’s CORTX distributed storage system [42] can be ex-
tended to incorporate FDMI. FDMI allows new storage fea-
tures, or FDMI plugins, to subscribe to and make consistent
storage system changes in response to client-initiated op-
erations. FDMI implements transactional coupling, whereby
plugin operations are guaranteed to be executed atomically
either simultaneously with or upon a successful completion
of a storage client initiated operation. Most importantly, the
FDMI plugin architecture is loosely coupled such that the
plugin itself can be independently developed and deployed.

We conduct a study of how FDMI can be used to develop
three different classes of plugins of varying complexity, re-
quirements, and functionality. While the loosely coupled
model may introduce additional I/O overhead in some in-
stances, use of CORTX’s enhanced client API for FDMI plu-
gins can mitigate such effects. We believe that FDMI offers
an intriguing new design point for building next-generation,
scalable, extensible storage systems.

2 THE CASE FOR PUB-SUB STORAGE
Storage systems are often re-factored and designed to in-
clude new features that were not part of the original sys-
tem [3, 11, 21, 30, 49]. This Integrated design requires a deep
understanding of the codebase; the implementation is often
cumbersome and error prone. To ease the development bur-
den, previous works have proposed Interposed I/O that uses
interposition to enable adding new features relatively inde-
pendent of the storage system implementation itself [17, 50].
We refer to these feature implementations as plugins. The
Conventional Publish/Subscribe (Conv. Pub-Sub) architecture
allows dynamically attaching software components to large
systems [5, 6, 13, 19, 24]. These Pub-Sub solutions focus on
scaling the entire software service as opposed to augment-
ing the storage layer. In contrast, FDMI adopts the classic
Pub-Sub communication architecture for storage systems but
additionally augments the storage system with transactional
support for subscriber operations.

Table 1 compares different properties across these plugin
architectures including our proposed FDMI architecture. To
allow for the widest possible range of plugins, the plugin
architecture must support several key properties.
Access to the Storage layer. The ability to access the in-
ternal state and parameters of the storage layer is desirable.
Integrated and Interposed architectures, by design, place plu-
gins directly in the I/O path and can access client-issued I/O
operations [17, 39, 50]. The Conventional Pub-Sub plugins
are entirely outside the storage I/O path and do not have
access to the storage layer. FDMI in contrast, is a storage-
aware pub-sub architecture that has access to storage state
and can optionally interpose itself in the I/O path.

Transactional guarantees. A key challenge with design-
ing new storage plugins is allowing access and modifications
without introducing inconsistency or corruption. An impor-
tant distinction for FDMI is that it provides essential trans-
actional guarantees to new storage plugins. FDMI plugins
can perform storage operations within a transaction context
provided by the storage core and thereby can achieve fault-
tolerance and consistency. We discuss FDMI’s transactional
coupling design further in Section §3.
No I/O Amplification. Storage features may modify or gen-
erate storage I/O depending on the nature of their function-
ality. First, in case a plugin needs to access stored data for
performing actions outside of the client I/O path, this will
result in I/O amplification in all architectures – Integrated,
Interposed, and FDMI. In case of operations triggered syn-
chronously with client I/O, Integrated and Interposed plu-
gins can access and modify the I/O operation payload and
meta-data without needing additional storage-level opera-
tions. In contrast, FDMI allows an asynchronous operation
in response to completed or ongoing I/O operations. Any
additional I/Os to access the original client I/O payload leads
to I/O amplification. However, there is potential for optimiza-
tions in the FDMI model that could offset some of this I/O
amplification as discussed later in the paper (§6).
Independent Scaling. Depending on the complexity of the
storage plugin, it may need greater or lesser resources than
that of the storage system. Thus, allowing the plugin in-
stance to scale independently is desirable but Integrated
architectures are unable to achieve this goal. Interposed I/O,
depending on the specific implementation, can allow for in-
dependent scaling of the plugin. For instance, FUSE-based
plugins [1] can be deployed on independent resources with
networked implementations, while other solutions at the
block layer [17] are unable to do so. FDMI fundamentally
decouples the storage system core layers from the storage
plugin to achieve independent scaling.
Ease of development. The amount of developer effort is
directly proportional to the development complexity of any
software. The Integrated architecture imposes significantly
higher complexity than other architectures since the devel-
oper must modify an existing complex codebase to imple-
ment the new feature. Interposed architectures can also incur
modestly high complexity since plugin development often
occurs in a highly concurrent environment and operations
must be performed in the latency sensitive I/O path. FDMI
and Pub-Sub architectures simplify the development process
for plugin developers via a simple user level API.

3 FDMI OVERVIEW
In this section, we discuss how FDMI extends the core func-
tionality of a storage system and enables the development

24

Infusing Pub-Sub Storage with Transactions HotStorage’22, July 27-28, 2022, virtual conference

Figure 1: FDMI system architecture in CORTX.

of FDMI plugins. While we discuss FDMI’s mechanisms in
the context of Seagate’s CORTX distributed storage system,
FDMI’s general design is more broadly applicable.

3.1 Seagate’s CORTX
CORTX is Seagate’s cloud software stack that provides dis-
tributed object storage [42]. The core storage component in
CORTX isMotr [43]. Motr provides object and key-value stor-
age and exposes the CORTX Client Interface and the CORTX
Management and Control Interface. A CORTX deployment
consists of several nodes connected over the network that
run Motr server instances and other CORTX components.
The software stack also includes additional layers to connect
with NFS, CIFS, POSIX and S3/Swift protocols. There are
other components for high availability checks and control
such as HA, CORTX Provisioner, and CORTXAdministration
toolset.

3.2 Minimizing the Contact Surface
Besides decoupling the plugin development and deployment
from the storage system, FDMI minimizes its own contact
surface with the CORTX codebase. FDMI consists of three
types of components, the FDMI Source, the FDMI Service, and
FDMI Plugin. FDMI’s contact surface is encapsulated entirely
within its FDMI Source component which modifies CORTX’s
Motr core layer. The FDMI Service component is broken up
into FDMI Source Dock and FDMI Plugin Dock; these are
initialized with the Motr instance. The FDMI Plugin Dock
interfaces with the FDMI Plugin instances while the FDMI
Source Dock interacts with FDMI Source instances. Figure 1
depicts FDMI architecture within CORTX. The FDMI Source
instances run as part of the Motr core storage layer. The
FDMI plugin interacts with the FDMI plugin dock and can
also optionally use the CORTX client interface if needed.
In a standard Motr cluster deployment, there may exist

multiple FDMI Sources, one per Motr instance, each con-
tributing a different set of information to the FDMI Source
dock. The FDMI Source instance is integrated with Motr core
and interposes on plugin-subscribed I/O operations, notify-
ing the FDMI plugin via the FDMI service. In addition, it
coordinates the committing of transactions at the Motr core
in coordination with the FDMI plugin as necessary. Motr

operations are initiated by clients accessing or updating the
data or metadata of the storage system and are interposed
upon by the FDMI Source. Each operation of interest to plu-
gin and corresponding data that is sent through the system
is an FDMI record. FDMI filters, maintained within the FDMI
Source, define the set of rules to filter out FDMI records. Each
filter rule has a cluster-wide, unique Filter ID.

3.3 A Narrow API
Applications running on different clients issue storage op-
erations to the Motr system after it is up and initialized.
These operations are of the plugin’s interest and meet the
filter rules defined in the cluster configuration service. We
illustrate the interactions described below in Figure 2.
FDMI Source. The FDMI Source is part of a Motr server in-
stance and is the only FDMI entity that manipulates CORTX
state directly. When starting operation, the FDMI Source
instances allocate an in-memory record structure for fast ac-
cess during the time the record is processed by FDMI Source
dock. A persistent version of this record is kept because mul-
tiple plugins may be in the process of receiving the records
or running plugin operations. Records are discarded when
all plugins have released the record.
FDMI Source Dock. The FDMI Source communicates with
FDMI Source Dock using source specific record functions. It
also updates reference counters associated with one record
and informs the Source of FDMI record processing begin and
end. The FDMI Source dock maintains a list of registered
FDMI Sources with their corresponding posted records. The
FDMI Source dock’s main control flow runs a state machine
that forwards notifications/responses to/from plugins.
FDMI Plugin Dock. The FDMI plugin dock interacts with
each plugin and is responsible for registering and de-registering
plugins and forwarding records to plugins. The plugin dock’s
private API allows plugins to access these functions and to
enable/disable filters. The FDMI plugin dock also uses a state
machine to deliver records to the plugin, update reference
counters, and propagate messages to the Source.
FDMI Plugin. An FDMI plugin implements features we
want to incorporate into the storage system. During initial-
ization, plugins get added to the cluster as a plugin-classMotr
client. Plugins then get access to the extended Motr client
interface for issuing operations to Motr core. The extended
Motr client interface is discussed further later (§4.2). Plugins
are notified of FDMI records by the plugin dock. Every plu-
gin explicitly indicates that a record is no longer needed by
issuing a special Release message.

4 TRANSACTIONAL COUPLING
Storage features have awide range of requirements for access
to storage state as well as the ability to manipulate client I/O

25

HotStorage’22, July 27-28, 2022, virtual conference L. Rodriguez et al.

operations. Before discussing how FDMI transforms CORTX
into a pub-sub system supporting transactionally coupled
plugins, we first identify and understand three classes of
FDMI storage plugins.

4.1 A Taxonomy of Storage Plugins
We identify three classes of plugins that differ in how they
interact with the storage system. In all cases, the plugin runs
code in response to one or more client-initiated operations
in the storage system.
Class A. Plugins in this class are simple consumers of client
operations. They are notified of registered operations of inter-
est after the containing “source” transaction has successfully
committed. However, notifications must be reliable so that
plugin actions can be made both fault-tolerant and transac-
tionally consistent. An example of Class A plugin would be
I/O profiling, whereby the plugin observes the I/O stream
from the application.
Class B. Plugins in this class get notified similarly to Class A
plugins, i.e., upon committing the precipitating transaction.
However, Class B plugins generate additional operations
back into the source storage system. The generated opera-
tions are transactionally coupled and are guaranteed to com-
mit atomically if the plugin runs successfully. An example of
a Class B plugin would be semantic enhancer plugin [33] that
generates additional metadata of stored data asynchronously
(e.g., automatic labeling of uploaded images).
Class C. Class C plugins are the most powerful. Plugins
in this class get notified of operations prior to the source
transaction commit. However, Class C plugins can augment
and modify the source transaction itself with additional op-
erations. The entire set of operations from both client and
plugin get wrapped in a single transaction to be committed
atomically. An example of a Class C plugin is a dynamic tier-
ing plugin that changes data layout to different performance
tiers of storage dynamically depending on data popularity.

4.2 Coupling Transactions
FDMI builds upon CORTX’s distributed transaction sup-
port [14] to include a novel capability of transactional cou-
pling for plugins.
The first variant of the transactional coupling model en-

sures that each plugin action will be coupled with the precip-
itating client transaction. Client transaction notifications are
sent to the plugin, multiple times if needed to handle plugin
failures. This guarantees that an active plugin stays consis-
tent with the state of the storage system. The second variant
allows plugins to reliably issue additional transactions in
the storage system upon the success of the precipitating
client transaction. Finally, the third variant allows plugins
to augment and/or modify client-initiated operations with

additional plugin operations, all of which are committed as
part of a single joint transaction. This variant is the most
powerful and allows the plugin to arbitrarily change how
the storage system would respond to client I/O operations.
The foundation for FDMI’s transactional coupling is con-

textual record logging whereby client operations, together
with their transactional context, are persistently logged by
the FDMI source. This means that, for every operation be-
longing to the same transaction, the corresponding FDMI
record sent to the plugin inherits the precipitating transac-
tion’s context. For instance, consider two consecutive writes
to different objects issued by different clients and both writes
are part of the same transaction by CORTX’s distributed
transaction manager. For a Class A plugin that is attached
and registered to monitor object writes, the source will have
access to one FDMI event per committed operation. If the
transaction is aborted by the client, then the corresponding
FDMI plugin will not get notified and thus remain consistent
with the storage system. Furthermore, a persistent log of
committed transactions and registered plugins is used by the
distributed transaction manager to handle the re-registration
of plugins upon recovery after a failure.

Class B plugins in FDMI can additionally use the CORTX
client interface to initiate and finalize new transactions. Plu-
gins within this class use the second variant of the transac-
tional coupling mechanism whereby they initiate new trans-
actions that are dependent on the precipitating transaction
committing. Each plugin-initiated transaction is a response
to the corresponding FDMI received record(s) which is guar-
anteed to be part of a committed transaction. If the plugin
fails after the precipitating transaction commits, operations
within the newly created but unfinished plugin-initiated
transaction can be restarted.

To support Class C plugins, the FDMI source forwards the
precipitating event information along with the transactional
context. To do so, Class C plugins use an extended Motr
client interface that includes additional operations to add,
cancel and replace operations within the same transaction
context at the FDMI source. To make this possible, the source
inserts itself into the precipitating transaction’s context and
request path before any response is sent back to the client.
For instance, a Class C dynamic storage tiering plugin would
remap client read and write operations depending on the
dynamic location of data within performance tiers.

4.3 Life-cycle of an FDMI Record
To understand how FDMI’s transactional coupling design
works in its entirety, we can analyze the life cycle of an
FDMI record for each plugin class. The Motr system is first
initialized with a client application accessing storage. A set
of filter rules are defined in the cluster configuration service

26

Infusing Pub-Sub Storage with Transactions HotStorage’22, July 27-28, 2022, virtual conference

Figure 2: Life cycle of a single FDMI record for Class A (left), Class B (center) and Class C (right).

and FDMI record types are mapped to various plugins as
they register themselves.

Figure 2 depicts the life-cycle of a single FDMI record pro-
duced at the source in response to a client operation and
the plugin that registers its interest in the record. Three life-
cycles one each for Class A (left), Class B (center) and Class
C (right), are shown. In response to a client operation, for
Class A and Class B plugins, the Source immediately com-
mits the containing client transaction and acknowledges the
completion of the operation to the client. Class C plugins, on
the other hand, the Source simply starts a transaction in an-
ticipation of additional plugin-initiated operations that will
modify the transaction; client acknowledgment is delayed
until after the transaction is committed at a later time.
As the next step, for each class, a record is posted by

the FDMI Source to the Source Dock, thereby beginning its
life-cycle. The Source Dock then starts analyzing the record
filter rules and sends a message to the Source to inform that
the processing has started and the record is then stored at
the Source to be used in case of failures. After this process
is done, Source Dock sends the record to the Plugin Dock
which in turn notifies the plugin itself of the new record for
plugin processing. In case of Class B and C, in response to
the Plugin Dock’s notification of the new record, the FDMI
plugin acting as an FDMI client initiates its own transaction
at the FDMI source directly. The FDMI source either commits
(for Class B) or updates and then commits (for Class C) the
plugin-initiated transaction and acknowledges the plugin.
The Plugin Dock next forwards the plugin’s record release
notification to the Source Dock, which in turn asks the FDMI
source to discard the record, thereby ending its life-cycle.

4.4 Source and Plugin Fault-Tolerance
FDMI provides fault tolerance for plugins and sources. A con-
textual record is guaranteed to be stored persistently within

the FDMI source and available until all notified plugins ex-
plicitly release the record. Plugins that perform idempotent
actions can recover from crashes simply by re-registering
and getting notified of unreleased records. The FDMI Sources
rely on CORTX’s distributed transaction manager and its
write-ahead log for crash recovery. The Source triggers a
recovery phase for all active transactions and associated
records. As a result, any registered plugin will receive all the
records for further execution. Duplicate records, if received,
are discarded by the plugin. Duplicate release operations as
received by the FDMI Service are also discarded.

5 PRELIMINARY ANALYSIS
To understand the limitations and benefits of FDMI, we an-
alyze a list of typical storage plugins. We evaluate plugin
properties (Table 1) of each plugin and how each plugin ar-
chitecture addresses them. Note that we did not consider the
conventional Pub-Sub architecture since it only provides the
ability to monitor the system from layers above the storage
stack. Table 2 summarizes our findings.

Independent scaling and ease of development are achiev-
able only through FDMI. Transactional guarantees are pos-
sible with Integrated plugins since the plugins have direct
access to the transactional context and control flow within
the storage layer. On the other hand, Interposed plugins are
limited to the interface exposed by the storage system. In-
tegrated and Interposed plugins eliminate I/O amplification
while FDMI plugins that issue additional I/O to storage are
unable to due to their asynchronous operation.
We also examined how various storage plugins map to

FDMI classes. We first note that plugins that simply moni-
tor activity within the storage system are Class A. Plugins
such as I/O offloading, I/O shepherding, dynamic tiering, and
caching are Class C plugins with inline operations requir-
ing the direct modification of the I/O request stream. For

27

HotStorage’22, July 27-28, 2022, virtual conference L. Rodriguez et al.

Storage Plugins Integrated Interposed FDMI DescriptionS T N E D S T N E D S T N E D
I/O Profiling [20] A Record the I/O stream per storage application.
System Profiling [2, 37] A Monitor internal parameters of storage system.
Backup/Replication [25, 36] B,C Replicate a consistent copy of the data.
Deduplication [27, 29] B,C Eliminate duplicated data to reduce space.
Encryption [12, 28] B,C Encrypt data for security purpose.
Compression [29, 51] B,C Compress data to reduce space utilization.
Integrity Checker [26, 34] B,C Detect inconsistencies and report errors.
RAID Mirroring [23, 35] B,C Create a copy of the data in different locations.
Semantic Enhancer [33] B,C Label data with semantic names.
Versioning [7, 40] B,C Maintain a backup of different versions.
Data Reorganization [9, 44] B,C Dynamically change data layout or striping.
Tiering [16, 46] C Optimize data placement among storage tiers.
Caching [41, 48] C Cache frequently accessed data.
I/O off-loading [32] C Redirect I/O traffic to another location.
I/O shepherding [18] C Handle I/O errors to improve data reliability.

Table 2: Storage plugins and how they can be implemented using the different system architectures. Each property
in the architecture column corresponds to one column on Table 1, S: Storage Access, T: Transactional Guarantees, N: No I/O Amplification, E:
Independent Scale and D: Ease of development. Darker cells indicate that specific property can be achieved using the corresponding architecture.
The values within each cell for FDMI (column T) represent plugin class variants: A, B, C.

example, a caching plugin may modify a client I/O opera-
tion to redirect it to the cache. On the other hand, plugins
such as backup/replication, deduplication encryption, com-
pression, integrity checker, raid mirroring, semantic enhancer,
versioning and data reorganization require additional I/O for
data/metadata updates and can be implemented as either
Class B (asynchronous, offline) or C (inline) plugins.

6 DISCUSSION AND FUTUREWORK
The publish-subscribe model for storage is functionally fea-
sible but it raises several questions around its scope of ap-
plicability, performance impact, and generalizability. An im-
portant next step is to further understand the potential and
limitations of this new storage system architecture by imple-
menting a wide range of plugins. In particular, since plugins
vary in their consistency and performance requirements,
evaluating how the broadest range of plugins can be sup-
ported within the publish-subscribe model is critical.

A key challenge with this evaluation is ensuring that plug-
ins do not compromise storage performance guarantees. One
avenue of exploration in this regard is further extending the
client API to allow plugins to reduce the storage and network
I/O amplification incurred. First, if recent client I/O payloads
are cached at the FDMI source, the plugin initiated opera-
tions may avoid storage-level I/O amplification. Second, the
FDMI API can be additionally augmented to offload some
computation to the FDMI Source by allowing plugins to reg-
ister functions that get executed in response to specific client
I/O operations. Besides performing computation on data at
the Source, these functions can also eliminate network and
storage I/O amplification induced by the plugin.

Finally, we will also evaluate how the FDMI architecture
applies to other storage systems such as Ceph [47], Swift [45],
and Minio [31]. We believe the basic mechanisms of transac-
tion logging and notification could be created within these
alternate systems without significant development effort.
The FDMI Service itself is independent of the store and only
interacts with the FDMI Source and the plugin. Thus, we
anticipate that building capabilities equivalent to the transac-
tional coupling provided by the FDMI Source implementation
in CORTX should be feasible within these alternate storage
systems.

7 CONCLUSIONS
We presented the position that a publish-subscribe archi-
tecture is a valuable choice for building next generation
storage systems. Our goals were multi-fold but the jump-
ing board was not only the strong desire to enable storage
system feature development in an environment free from
the complexities of the storage system codebase but also the
need to support the development of a wide range of features,
safely. In our explorations, we realized the basic need for
synchronizing the actions performed by the new feature –
the subscribing plugin – with the actions of the storage sys-
tem itself. The proposed transactional coupling mechanism
enables the loosely coupled yet safe development of a wide
range of plugins of different classes ranging from simple ob-
servers of storage activity to those that alter the functioning
of the storage system itself. We expect future work in this
space to further inform the utility and limitations of this new
storage architecture.

28

Infusing Pub-Sub Storage with Transactions HotStorage’22, July 27-28, 2022, virtual conference

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful feed-
back. We thank members of Seagate’s CORTX team includ-
ing Nikita Danilov, Hua Huang, Sai Narasimhamurthy, and
Ganesan Umanesan, for sharing their knowledge of CORTX.
Liana Valdes and Raju Rangaswami were supported in part
by NSF award CNS-1956229, an ED GAANN fellowship, and
a Seagate Technology research gift.

REFERENCES
[1] 2022. File Systems in the Linux kernel: FUSE.

https://www.kernel.org/doc/html/latest/filesystems/fuse.html.
[2] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2009. Generating Realistic Impressions for File-SystemBench-
marking. In 7th USENIX Symposium on File and Storage Technologies.

[3] Marcos K. Aguilera, Kimberly Keeton, Arif Merchant, Kiran-Kumar
Muniswamy-Reddy, and Mustafa Uysal. 2007. Improving Recoverabil-
ity in Multi-tier Storage Systems. In 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07). 677–686.

[4] Samer Al-Kiswany, Abdullah Gharaibeh, and Matei Ripeanu. 2009. The
Case for a Versatile Storage System. In USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage’09).

[5] Amazon AWS. 2022. Amazon S3 Event Notifications. https://docs.aws.
amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html.

[6] Amazon AWS. 2022. AWS Lambda service. https://aws.amazon.com/
lambda/.

[7] Amazon AWS. 2022. S3 Bucket Backup. https://docs.aws.amazon.
com/aws-backup/latest/devguide/s3-backups.html.

[8] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul
Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate. 2009.
PLFS: a checkpoint filesystem for parallel applications. In Proceedings
of the Conference on High Performance Computing Networking, Storage
and Analysis. IEEE, 1–12.

[9] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason
Liptak, and Vagelis Hristidis. 2009. BORG: Block-reORGanization for
Self-optimizing Storage Systems. In 7th USENIX Conference on File and
Storage Technologies (FAST 09).

[10] K. Birman and T. Joseph. 1987. Exploiting Virtual Synchrony in Dis-
tributed Systems. In Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles (SOSP ’87). 123âĂŞ138.

[11] Matt Blaze. 1993. A Cryptographic File System for UNIX. In Proceedings
of the 1st ACM Conference on Computer and Communications Security
(CCS ’93). 9âĂŞ16.

[12] Giuseppe Cattaneo, Luigi Catuogno:Università di Salerno, Aniello
Del Sorbo:Università di Salerno, and Pino Persiano:Università di
Salerno. 2001. The Design and Implementation of a Transparent Cryp-
tographic File System for UNIX. In 2001 USENIX Annual Technical
Conference (USENIX ATC 01).

[13] Ceph. 2022. Bucket Notifications. https://docs.ceph.com/en/latest/
radosgw/notifications/.

[14] Nikita Yurievich Danilov and Eric Barton. 2012. System and method
for performing distributed transactions using global epochs. US Patent
8,103,643.

[15] Michail Flouris and Angelos Bilas. 2005. Violin: A Framework For
Extensible Block-level Storage. In IEEE Conference on Mass Storage
Systems and Technologies.

[16] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini,
and Raju Rangaswami. 2011. Cost Effective Storage Using Extent Based
Dynamic Tiering. In Proceedings of the 9th USENIX Conference on File

and Stroage Technologies (FAST’11). 20.
[17] Jorge Guerra, Luis Useche, Medha Bhadkamkar, Ricardo Koller, and

Raju Rangaswami. 2008. The case for active block layer extensions.
ACM SIGOPS Operating Systems Review 42 (10 2008), 3–9.

[18] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2007. Improving File
System Reliability with I/O Shepherding. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07).
New York, NY, USA, 293âĂŞ306.

[19] Hadoop. 2022. Zookeeper Watches. https://zookeeper.apache.org/
doc/r3.3.3/zookeeperProgrammers.html.

[20] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2012. A File Is Not a File:
Understanding the I/O Behavior of Apple Desktop Applications. ACM
Trans. Comput. Syst. (aug 2012), 39.

[21] Dave Hitz, Michael Malcolm, and James Lau. 1994. File System Design
for an NFS File Server Appliance. In USENIX Winter 1994 Technical
Conference (USENIX Winter 1994 Technical Conference).

[22] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. 2005. The
Automatic Improvement of Locality in Storage Systems. ACM Trans.
Comput. Syst. (nov 2005), 424âĂŞ473.

[23] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu
Wei, Zhiyue Li, and Weimin Zheng. 2021. FusionRAID: Achieving
Consistent Low Latency for Commodity SSD Arrays. In 19th USENIX
Conference on File and Storage Technologies (FAST 21). 355–370.

[24] Kafka. 2022. Kafka Documentation. https://kafka.apache.org/
documentation/.

[25] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and
John Wilkes. 2004. Designing for Disasters. In 3rd USENIX Conference
on File and Storage Technologies (FAST 04).

[26] Gene H. Kim and Eugene H. Spafford. 1994. The Design and Imple-
mentation of Tripwire: A File System Integrity Checker. In Proceedings
of the 2nd ACM Conference on Computer and Communications Security
(CCS ’94). 18âĂŞ29.

[27] Ricardo Koller and Raju Rangaswami. 2010. I/O Deduplication: Uti-
lizing Content Similarity to Improve I/O Performance. In 8th USENIX
Conference on File and Storage Technologies (FAST 10).

[28] AndrewW. Leung, Ethan L. Miller, and Stephanie Jones. 2007. Scalable
security for petascale parallel file systems. In SC ’07: Proceedings of the
2007 ACM/IEEE Conference on Supercomputing. 1–12.

[29] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezise, and Peter Camble. 2009. Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality. In 7th USENIX
Conference on File and Storage Technologies (FAST 09).

[30] Linux. 2022. LessFS: deduplication filse system in Linux. https:
//sites.google.com/a/projectme.org/lessfs/lessfs-guide.

[31] MinIO. 2022. MinIO: Multi-Cloud Object Storage. https://min.io.
[32] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008.

Write Off-Loading: Practical Power Management for Enterprise Stor-
age. In 6th USENIX Conference on File and Storage Technologies (FAST
08).

[33] James O’Toole, David Gifford, Pierre Jouvelot, and Mark Sheldon. 1997.
Semantic File Systems. ACM SIGOPS Operating Systems Review 25 (11
1997).

[34] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok.
2004. FS: An In-Kernel Integrity Checker and Intrusion Detection
File System. In Proceedings of the 18th USENIX Conference on System
Administration (LISA ’04). 67âĂŞ78.

[35] David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In Proceedings of the
1988 ACM SIGMOD International Conference on Management of Data.
109âĂŞ116.

29

https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/aws-backup/latest/devguide/s3-backups.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/s3-backups.html
https://docs.ceph.com/en/latest/radosgw/notifications/
https://docs.ceph.com/en/latest/radosgw/notifications/
https://zookeeper.apache.org/doc/r3.3.3/zookeeperProgrammers.html
https://zookeeper.apache.org/doc/r3.3.3/zookeeperProgrammers.html
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://sites.google.com/a/projectme.org/lessfs/lessfs-guide
https://sites.google.com/a/projectme.org/lessfs/lessfs-guide
https://min.io

HotStorage’22, July 27-28, 2022, virtual conference L. Rodriguez et al.

[36] R. Hugo Patterson and StephenManley. 2002. SnapMirror: File-System-
Based Asynchronous Mirroring for Disaster Recovery. In Conference
on File and Storage Technologies (FAST 02).

[37] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2005. Analysis and Evolution of Journaling File Systems.
In Proceedings of the Annual Conference on USENIX Annual Technical
Conference (ATEC ’05). 8.

[38] Tom Rhodes. 2007. FreeBSD Handbook - Chapter 19: GEOM: Modular
Disk Transformation Framework. FreeBSD Handbook (2007).

[39] David Rosenthal. 1990. Evolving the Vnode Interface. In In USENIX
Conference Proceedings. 107–118.

[40] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C.
Veitch, Ross W. Carton, and Jacob Ofir. 1999. Deciding When to For-
get in the Elephant File System. SIGOPS Oper. Syst. Rev. (dec 1999),
110âĂŞ123.

[41] Mohit Saxena, Michael M. Swift, and Yiying Zhang. 2012. FlashTier: A
Lightweight, Consistent and Durable Storage Cache. In Proceedings of
the 7th ACM European Conference on Computer Systems (EuroSys ’12).
267âĂŞ280.

[42] Seagate. 2022. CORTX Intelligent Object Storage Software. https:
//www.seagate.com/products/storage/object-storage-software/.

[43] Seagate. 2022. CORTX Motr. https://github.com/Seagate/cortx-motr.
[44] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Tim-

othy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2003. Semantically-Smart Disk Systems. In 2nd USENIX
Conference on File and Storage Technologies (FAST 03).

[45] Swift. 2022. Swift: OpenStack Object Storage. https://wiki.openstack.
org/wiki/Swift.

[46] Akshat Verma, Ricardo Koller, Luis Useche, and Raju Rangaswami.
2010. SRCMap: Energy Proportional Storage Using Dynamic Con-
solidation. In 8th USENIX Conference on File and Storage Technologies
(FAST 10).

[47] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Car-
los Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed
File System. Proc. USENIX OSDI (November 2006).

[48] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Ala-
gappan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2021. The Storage Hierarchy is Not
a Hierarchy: Optimizing Caching on Modern Storage Devices with
Orthus. In 19th USENIX Conference on File and Storage Technologies
(FAST 21). 307–323.

[49] XiaoJian Wu and A. L. Narasimha Reddy. 2012. A Novel Approach to
Manage A Hybrid Storage System. J. Commun. 7 (2012), 473–483.

[50] Erez Zadok, Ion Badulescu, and Alex Shender. 1999. Extending File
Systems Using Stackable Templates. In 1999 USENIX Annual Technical
Conference (USENIX ATC 99). USENIX Association.

[51] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang, Yu Hua, and Qiang
Wang. 2019. Finesse: Fine-Grained Feature Locality based Fast Re-
semblance Detection for Post-Deduplication Delta Compression. In
17th USENIX Conference on File and Storage Technologies (FAST 19).
121–128.

30

https://www.seagate.com/products/storage/object-storage-software/
https://www.seagate.com/products/storage/object-storage-software/
https://github.com/Seagate/cortx-motr
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift

	Abstract
	1 Introduction
	2 The Case for Pub-Sub Storage
	3 FDMI Overview
	3.1 Seagate's CORTX
	3.2 Minimizing the Contact Surface
	3.3 A Narrow API

	4 Transactional Coupling
	4.1 A Taxonomy of Storage Plugins
	4.2 Coupling Transactions
	4.3 Life-cycle of an FDMI Record
	4.4 Source and Plugin Fault-Tolerance

	5 Preliminary Analysis
	6 Discussion and Future Work
	7 Conclusions
	References

