
File Fragmentation from the Perspective of I/O Control
Jonggyu Park

Sungkyunkwan University
jonggyu@skku.edu

Young Ik Eom
Dept. of Electrical and Computer Engineering /

College of Computing and Informatics,
Sungkyunkwan University

yieom@skku.edu

ABSTRACT
File fragmentation has been widely studied for several
decades due to its detrimental effects on I/O activities. How-
ever, most of the previous research focuses on its perfor-
mance aspect in a single application. In this paper, we analyze
the effect of fragmentation on I/O control in a consolidated
system where multiple applications run simultaneously. Our
evaluation demonstrates that all of the weight-based I/O
control mechanisms supported by the Linux kernel fail to
achieve fair I/O sharing for different reasons when they
meet fragmentation. Also, we show that defragmentation
can promptly antidote such failures by preventing request
splitting and device-level resource conflicts.

CCS CONCEPTS
• Information systems→ Storage management; • Software
and its engineering → Software maintenance tools.

KEYWORDS
File fragmentation, I/O control, cgroups

ACM Reference Format:
Jonggyu Park and Young Ik Eom. 2022. File Fragmentation
from the Perspective of I/O Control. In 14th ACM Workshop on
Hot Topics in Storage and File Systems (HotStorage ’22), June 27–
28, 2022, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3538643.3539746

1 INTRODUCTION
Resource management has been a building block for realizing
application consolidation [15, 17, 23–25, 28, 30, 32, 34, 35, 38].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539746

Since each application has a discrete performance require-
ment, the underlying system should provide an adequate
amount of system resources. Additionally, to guarantee a
certain level of performance regardless of the behavior of
co-running applications, the system should prevent perfor-
mance interference among applications, thereby providing
strict performance isolation. Modern Linux systems utilize
Cgroup [5, 6] to fulfill such necessities. Especially, the weight-
based I/O controlling of Cgroup is widely utilized due to its
convenience, intuitive design, and work conservation [16].
To control I/O resources, Cgroup tightly communicates

with I/O controllers at the block layer, such as CFQ (Com-
pletely Fair Queuing) [3] and BFQ (Budget Fair Queuing)
[1]. Specifically, each I/O controller refers to the I/O weight
values of applications and controls/limits their I/O requests
according to the I/O weights. However, we observe that file
fragmentation hinders I/O controller from precisely control-
ling I/Os for various reasons. Unfortunately, previous stud-
ies about fragmentation [8, 12, 14, 19, 21, 22, 26, 29, 31, 33]
only focus on the I/O performance of a single application
without exploring performance interference among applica-
tions. Therefore, its negative influence on I/O control remains
undiscovered.

In this paper, we approach filesystem fragmentation from
the perspective of I/O control and discover various problems
incurred by fragmentation in a consolidated system where
multiple applications run together. We first investigate the
internal behavior of I/O control mechanisms that support
Cgroup and discover the cases of scheduling failures incurred
by fragmentation. Afterward, we eliminate existing fragmen-
tation using FragPicker [27], a defragmenter optimized for
modern SSDs, and analyze how defragmentation affects I/O
control in such a system.
In summary, our results demonstrate that fragmentation

increases the number of I/Os, decreases the size of each I/O,
and complicates the performance characteristics. Due to such
overheads, fragmentation dilutes the effectiveness of the con-
ventional I/O control mechanisms. First, CFQ experiences
a failure of I/O control because its IOPS-based I/O control
does not consider the size of each I/O operation. Second, BFQ
incurs performance interference since its sector-based I/O
control sacrifices certain applications to equalize I/O band-
width across applications. Finally, the linear performance

126

https://doi.org/10.1145/3538643.3539746
https://doi.org/10.1145/3538643.3539746

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Jonggyu Park and Young Ik Eom

Block LayerBIO

Cgroup A (weight=200)
Alone=100MB/s

Together=66MB/s

IO
IO

66%

IO

33%

Device Driver

Cgroup B (weight=100)
Alone=50MB/s

Together=16MB/s

Filesystem

Figure 1: An Example of Proportional I/O Sharing
model of IOCost [16] fails to predict the I/O performance and
thus incurs unfair I/O scheduling. We observe that all of the
problems can be instantly mitigated by defragmentation.

2 BACKGROUND
2.1 Cgroup and I/O Control
Various Linux systems utilize Cgroup for controlling system
resources, and its importance has been increasing due to
the widespread adoption of application consolidation. For
example, contemporary server systems consolidate various
server instances using virtualization technology for better
resource efficiency [9, 36, 37]. In this circumstance, Cgroup
plays a critical role in resource management to guarantee the
performance requirement of each server while minimizing
performance interference. Similarly, mobile systems also
utilize Cgroup to boost the performance of the foreground
application for better user responsiveness while preventing
resource monopolization by background applications [4].
There are various ways to regulate I/O resources. First,

blk-throttle [2] limits I/Os in the form of available read/write
IOPS or bandwidths. However, this method is not work-
conserving. Second, IOLatency [7] can set a target I/O la-
tency per cgroup. Unfortunately, finding an appropriate I/O
latency in the real world is arduous [16]. Finally, one can set
I/O weight of each cgroup and proportionally distribute I/O
resources according to their I/O weights.

For example, as shown in Figure 1, suppose cgroup A has
an I/O weight of 200 and cgroup B has an I/O weight of
100. In this case, the I/O control mechanism in the block
layer regulates the I/O activities of each cgroup and provides
66% and 33% of I/O resources to cgroup A and B, respec-
tively. Therefore, if cgroup A can achieve 100MB/s when it
runs alone, its bandwidth should be at least 66MB/s regard-
less of I/O behaviors of other cgroups. Similarly, the system
should guarantee at least 16MB/s of throughput to cgroup
B, which is around 33% of 50MB/s. To provide performance
isolation, the application behavior in a single cgroup should
not subvert such promised performance guarantees of all the
cgroups.

2.1.1 Completely FairQueuing. To realize such proportional
I/O sharing of Cgroup, the Linux kernel supports various I/O
control mechanisms. First, CFQ [3] is an I/O scheduler for

the single-queue block layer that distributes I/O resources
based on timeslice or IOPS. CFQ maintains per-process I/O
queues and dispatches I/Os from the I/O queues by rotating
the I/O queues whenever each I/O queue expires its timeslice.
To support group scheduling, CFQ manages a cfq group for
each cgroup and keeps track of their I/O usages using per-
cgroup vdisktime. Afterwards, CFQ picks a cgroup that has
the smallest vdisktime and serves their I/Os. Since it is not
feasible to accurately measure the elapsed time in the case
of NCQ (Native Command Queuing)-enabled devices, CFQ
utilizes IOPS instead of timeslice in calculating vdisktime, if
the device is non-rotational and NCQ-enabled.
However, CFQ is vulnerable to the case where hetero-

geneous workloads co-run. For example, if a high-priority
application issues small-sized I/Os while a low-priority one
issues large-sized I/Os, the low priority one can monopolize
the storage devices since CFQ utilizes IOPS without consid-
ering the actual size of each I/O.

2.1.2 Budget FairQueuing. Second, BFQ [1] is a multi-queue
I/O scheduler that distributes a fair amount of I/O band-
width to each application. Unlike CFQ, BFQ utilizes the ag-
gregate amount of I/O sectors issued by each application,
instead of either elapsed time or IOPS. Therefore, BFQ can
achieve fairness in terms of I/O bandwidths among appli-
cations. However, BFQ can incur performance interference
since it equalizes the I/O bandwidth without considering
the influence of each I/O on the storage. For example, it has
been reported that larger-sized I/Os can achieve a higher
I/O performance [10, 13, 18, 20]. Therefore, BFQ allows an
application issuing small-sized I/Os to occupy the underlying
devices longer than another issuing large-sized I/Os, in order
to equalize their I/O bandwidths. In this way, with BFQ, the
performance of applications can be significantly affected by
the I/O characteristics of other applications.

2.1.3 IOCost. Finally, a new I/O control mechanism, IOCost
[16], has been proposed to overcome the drawbacks of the
previous I/O schedulers. It predicts the cost of each I/O using
a linear performance model and calculates the available band-
width for each application. In this way, IOCost can achieve a
fair amount of device occupancy for each application. How-
ever, the linear performance model is insufficient to predict
the performance of SSDs because the I/O performance varies
depending on the location of the data inside the storage even
when their I/O attributes (I/O size, randomness, etc.) are
identical.

2.2 Fragmentation and Its Negative
Influence

File fragmentation refers to the state that data are scattered
into multiple non-contiguous pieces instead of a single large

127

File Fragmentation from the Perspective of I/O Control HotStorage ’22, June 27–28, 2022, Virtual Event, USA

Storage
Channel 1
Channel 2

IOIOIOIO IO

Filesystem
Fragmented file Contiguous file

Figure 2: File Fragmentation and its Influence

0

150

300

450

600

4KB 128KB 4096KB 4KB 128KB 4096KB

Baseline Fragmented

Sequential Random

Th
ro

ug
hp

ut
 (M

B
/s

)

IO size

Figure 3: The Performance Overheads Induced by Frag-
mentation

one. It has been continuously reported that fragmentation
occurs regardless of the filesystem type and degrades the
I/O performance [11, 21, 27]. As shown in Figure 2. Frag-
mentation at the filesystem layer incurs request splitting
where a single I/O request is split into multiple ones. This
reduces the average I/O size and increases both the number
of I/Os and their randomness for the same amount of data.
Fragmentation at the device layer hinders the exploitation of
the parallel units inside SSDs by incurring channel conflicts.

To explore the performance degradation by fragmentation,
we generate a fragmented file with 4KB fragment size and
measure the performance of sequential/random read oper-
ations with various I/O sizes. Since the file is fragmented
into 4KB fragments, all the I/Os are eventually split into
4KB-sized I/O requests/commands regardless of the size of
system calls that the application issues. Here, baseline shows
the performance of non-fragmented files. All experiments in
this paper are performed on a machine with Intel E5-2620 v4
CPU, 128 GiB RAM, and Samsung Flash SSD 850 Pro 256GB.
We use the F2FS filesystem with Linux kernel 5.7.0 (4.19.176
for CFQ).
As shown in Figure 3, the performance of sequentially

reading fragmented files is similar to that of randomly read-
ing non-fragmented files with 4KB I/Os. Specifically, frag-
mentation decreases the I/O performance by around 80%
when issuing 128KB sequential reads. This results comes
from the fact that fragmentation increases the randomness
of I/Os while decreasing the average size of each I/O.
Since SSDs utilize internal parallelism to improve I/O

throughput [10, 13, 18, 20, 39], the data placement is highly

0

100

200

300

400

0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (M

B
/s

)

Distance between Fragments (KB)

Figure 4: The Sequential Read Performance with Vary-
ing Distance btw Each Fragment

correlated to effectiveness of device-internal resources,
thereby influencing the I/O performance. To experimentally
demonstrate this phenomenon, we generate a fragmented
file with 4KB fragments and vary the distance between each
fragment. To generate both filesystem-level and device-level
fragmentation in the desired way, we utilize the attribute
of the log-structured allocation of F2FS and the Flash SSD,
which allocates new slots in the arrival order. Specifically,
using O_DIRECT I/Os, we append 4KB of data to the target
file and then append dummy data to a dummy file. Here, we
set the size of the dummy data for appending as the specified
distance. This process is serialized so that all of the write
operations are delivered to the storage without re-ordering.
By repetitively performing these operations, the target file
can be stored in an interleaved way with the dummy file in
both the filesystem and the storage.
In this experiment, all the aspects including the average

I/O size and the number of I/Os at the block layer are iden-
tical except for the distance between fragments. Figure 4
shows the 128KB sequential read performance. The flash
SSD shows various performance results depending on the dis-
tance. Specifically, it experiences a significant performance
drop at every 32KB (4KB * 8) distance by showing up to
70.5% lower performance than other cases. This indicates
that the SSD consists of multiple parallel units that can han-
dle 32KB at a time, and their conflicts significantly degrade
the performance. Like this, the data placement determines
the I/O performance even when all the other I/O character-
istics are identical. This anomaly cannot be detected by the
linear performance model of IOCost, thereby obstructing its
I/O control.

3 FAILURE OF I/O CONTROL DUE TO
FRAGMENTATION

File fragmentation decreases the average I/O size and in-
creases both the number of I/Os and their randomness. We
observe that such overheads incurred by fragmentation ex-
acerbate the drawbacks of each I/O control mechanism. To
experimentally demonstrate it, we perform the following

128

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Jonggyu Park and Young Ik Eom

0

200

400

600

0 30 60 90 120 150

Grp1 Grp2

180
Time (sec.)

Th
ro

ug
hp

ut
 (M

B
/s

) (a) CFQ
P1

P2 P3 P4 P5 P6

Th
ro

ug
hp

ut
 (M

B
/s

)

Time (sec.)
180

0

200

400

600

0 30 60 90 120 150

Grp1 Grp2
(c) IOCost

P1
P2 P3 P4 P5 P6

0

200

400

600

0 30 60 90 120 150

Grp1 Grp2

Time (sec.)

(b) BFQ

P1
P2 P3 P4 P5 P6

Th
ro

ug
hp

ut
 (M

B
/s

)

180

Figure 5: Scheduling Failure of I/O Control Mecha-
nisms due to Fragmentation

experiments. First, [P1] we run a workload that reads a non-
fragmented file with 128KB O_DIRECT I/Os in group 2 (grp
2). Second, [P2] after 30 seconds, we run the same workload
in group 1 (grp1) to monitor if each I/O control mechanism
can properly manage I/O resources. Third, [P3] we increase
the I/O weight of grp1 from 100 to 200 so that the weight
of grp1 becomes double the weight of grp2. Fourth, [P4] we
restore the priority of grp1 to 100 and switch the target file
of grp1 to a fragmented file. Here, the size of each fragment
is 4KB, and the distance between two fragments is 28KB. In
this way, the first offset of a fragment is 32KB away from
that of the next fragment. Afterward, [P5] we again increase
the weight of grp1 to 200. Finally, [P6] we terminate grp2
so that grp1 can run alone. We configure the experiment in
this way to compact various possible situations into a single
figure.
Using this benchmark, we evaluate the effectiveness of

CFQ, BFQ, and IOCost when they meet fragmentation. As
shown in Figure 5, all the I/O control mechanisms achieve
their scheduling goal when both grp1 and grp2 read non-
fragmented files (P2 and P3). Specifically, in P2, grp1 and
grp2 show identical performance since they have identical
I/O weights and run the same workload. In P3, grp1 achieves
two times higher throughput than grp2, which conforms to
the I/O weights. However, all of them fail to achieve their
goals when they meet fragmentation.
To provide performance isolation, the behavior of one

cgroup should not influence the performance of other
cgroups, which means the performance of grp2 in P4 and

P5 should be the same as that in P2 and P3, respectively.
Additionally, to provide proportional I/O sharing, the perfor-
mance of grp1 and grp2 in P4 should be at least 50% of that
in P6 (grp1 alone) and in P1 (grp2 alone), respectively, since
they should equally share the I/O resources (50%:50%) in P4.
In other words, each of the cgroups in P4 should show at
least half of the performance when each of them runs alone.
However, CFQ fails to achieve proportional I/O sharing

due to its IOPS-based policy. At P4, the performance of grp1
is only 15.5% of the performance when it runs alone (P6).
Since grp1 at P4 and P5 reads fragmented files, it requires
a more number of I/Os for the same amount of data than
grp2. Specifically, reading fragmented files (grp1) requires
around 32 times more number of I/Os for the same amount
of data, compared with contiguous files (grp2). Therefore,
the IOPS-based policy of CFQ allows grp2 to occupy a larger
amount of I/O resources in order to equalize the number of
I/Os across cgroups at P4.
In the case of BFQ, since BFQ tries to fairly distribute

I/O bandwidths across applications, fragmentation incurs
performance interference. To achieve its scheduling goal,
BFQ provides more I/O resources to grp1 because grp1 needs
more I/O resources to process the same amount of I/O sec-
tors, compared with grp2. In more detail, the average I/O
size of grp1 at P4 is only 4KB while that of grp2 is around
128KB. Meanwhile, due to the smaller I/O size, grp1 requires
around 5 times longer I/O time in processing the designated
amount of I/O sectors, compared with grp2. Therefore, grp2
experiences performance degradation when grp1 reads frag-
mented files. Particularly, the throughput of grp2 in P5 is
around 70% lower than that in P3.

IOCost calculates the device occupancy of each I/O opera-
tion using the linear performance model. Unfortunately, the
Flash SSD shows considerably different performance results
depending on the data layout even when the I/O character-
istics at the block layer are identical. Fragmentation scram-
bles the data placement, thereby decreasing the accuracy
of the performance model. Although IOCost has a dynamic
adjustment module to handle unexpected I/O performance,
it is insufficient to deal with the performance anomaly of
fragmentation. Therefore, IOCost also suffers from perfor-
mance interference. Specifically, grp2 experiences a 63% per-
formance drop due to the workload change of grp1, when
comparing P4 with P2 in Figure 5.
Like this, fragmentation brings about scheduling failure

of each I/O control for different reasons. First, an increase
in the number of I/Os due to fragmentation obstructs the
scheduling of CFQ. Second, BFQ experiences performance
interference due to an increased amount of I/O resources
required for the same amount of data. Finally, fragmentation
decreases the accuracy of the performance model of IOCost,
thereby incurring the failure of effective I/O control.

129

File Fragmentation from the Perspective of I/O Control HotStorage ’22, June 27–28, 2022, Virtual Event, USA

(a) CFQ

(b) BFQ

(c) IOCost

Time (sec.)

0

200

400

600

0 10 20 30 40 50 60 70 80 90 100 110

Grp1 Grp2

120

Time (sec.)

0

200

400

600

0 10 20 30 40 50 60 70 80 90 100 110

Grp1 Grp2

120

Time (sec.)

Th
ro

ug
hp

ut
 (M

B
/s

)

0

200

400

600

0 10 20 30 40 50 60 70 80 90 100 110

Grp1 Grp2

120

Th
ro

ug
hp

ut
 (M

B
/s

)
Th

ro
ug

hp
ut

 (M
B

/s
)

Figure 6: Defragmentation Effect on I/O Control with
Homogeneous Workloads

4 DEFRAGMENTATION AS A REMEDY OF
SCHEDULING FAILURE

In this section, we remedy the cases of scheduling failures
using defragmentation which eliminates existing fragmen-
tation by relocating filesystem blocks. For defragmentation,
we utilize FragPicker [27].

4.1 Homogeneous Workloads
To accurately investigate the effect of defragmentation on I/O
control, we run a workload that performs 128KB sequential
I/Os with O_DIRECT in two different cgroups, where grp1
has a two times higher I/O weight than grp2. Therefore, grp1
should occupy 2/3 of the entire I/O resources while grp2
takes 1/3. Here, grp1 reads fragmented files whereas grp2
reads non-fragmented files. We run grp2 first with running
grp1 after 10 seconds. Afterward, we perform FragPicker at
around Time 60. Here, we run FragPicker inside grp1 so that
the I/Os from FragPicker belong to grp1, because FragPicker
defragments only the files of grp1. At Time 110, we suspend
grp1 to measure the performance of grp2 when it runs alone.
Figure 6 shows the performance of both grp1 and grp2

in a time-series manner. In the case of CFQ, as grp1 begins
its task at Time 10, grp1 suffers from a significant perfor-
mance drop because the IOPS-oriented policy of CFQ allows
grp2 to monopolize the storage devices. Specifically, grp1
running with grp2 shows only 28% of the throughput, com-
pared with grp1 running alone. After defragmentation, CFQ

0
5

10
15
20

100% W100
50%

W200
67%

W400
80%

W800
89%

W100
50%

W200
67%

W400
80%

W800
89%

SQLite
Alone

SQLite Together (frag) SQLite Together (defrag)

83% 90% 95% 97%
66%

79% 88% 94%

0
30
60
90

120

100% W100
50%

W200
67%

W400
80%

W800
89%

W100
50%

W200
67%

W400
80%

W800
89%

SQLite
Alone

SQLite Together (frag) SQLite Together (defrag)

9.1% 9.4% 10.1% 10.9%

52% 68% 81% 90%

0
15
30
45
60

100% W100
50%

W200
67%

W400
80%

W800
89%

W100
50%

W200
67%

W400
80%

W800
89%

SQLite
Alone

SQLite Together (frag) SQLite Together (defrag)

21%
28% 37% 41% 54% 65% 74% 82%

CFQ

BFQ

IOCost

El
ap

se
d

Ti
m

e
(s

ec
.)

El
ap

se
d

Ti
m

e
(s

ec
.)

El
ap

se
d

Ti
m

e
(s

ec
.)

Figure 7: Elapsed Time of SQLite SELECT Query while
Varying I/O Weight

achieves fairer I/O sharing, thereby grp1 achieving 1.79 times
higher throughput than grp2. Here, since the performance
of FragPicker is also degraded by grp2 due to the same rea-
son, FragPicker with CFQ requires a much longer time for
defragmentation than that with BFQ and IOCost.
With BFQ and IOCost, grp2 suffers from significant per-

formance interference by grp1 before defragmentation. After
defragmentation is performed, both BFQ and IOCost prop-
erly control the I/O resources according to the I/O weights
by showing around two times higher throughput for grp1,
compared with grp2.

4.2 Heterogeneous Workloads
To investigate the case of heterogeneous workloads, we per-
form SELECT query to SQLite database with one million
entries (4.4GB in total) while running 64KB random read
with libaio (iodepth:16) using FIO benchmark, in two dif-
ferent cgroups. Also, we vary the I/O weight of the SQLite
workload from 100 to 800. To measure the effect of fragmen-
tation, we perform the evaluation two times, one (frag) with
FIO reading fragmented files and another (defrag) after de-
fragmenting the FIO files. In the figures, the percentage on
x-axis denotes its I/O share, and one on each bar means the
relative performance to the case when the workload runs
alone. Therefore, the percentage value on the x-axis and the
bar should be matched to provide proportional I/O sharing.
Figure 7 shows the elapsed time of SELECT query. Sim-

ilarly to the previous evaluations, BFQ and IOCost cannot

130

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Jonggyu Park and Young Ik Eom

0
20
40
60
80

100% 50% 33% 20% 11%

FIO
Alone

FIO Together

21% 12% 8% 5% 0
150
300
450
600

100% 50% 33% 20% 11%

FIO
Alone

FIO Together

33% 22% 13% 8%

CFQ/frag CFQ/defrag

0
25
50
75

100

100% 50% 33% 20% 11%

FIO
Alone

FIO Together

75%

36% 25% 21%
0

150
300
450
600

100% 50% 33% 20% 11%

FIO
Alone

FIO Together

20% 12%
32%

48%
BFQ/frag BFQ/defrag

0
25
50
75

100

100% 50% 33% 20% 11%

FIO
Alone

FIO Together

80% 77% 67% 58%

0
150
300
450
600

100% 50% 33% 20% 11%

FIO
Alone

FIO Together

18%23%33%
50%

IOCost/frag IOCost/defrag

Th
ro

ug
hp

ut
 (M

B
/s

)
Th

ro
ug

hp
ut

 (M
B

/s
)

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 8: Throughput of FIO Benchmark before/after
Defragmentation

provide performance isolation when FIO reads fragmented
files. Therefore, the elapsed time of SELECT query signifi-
cantly increases due to FIO. In the meantime, CFQ provides
more I/O resources to SQLite workload than its share since
its average I/O size is bigger than FIO with fragmented files.
After defragmentation, all the I/O control mechanisms show
better I/O proportionality.
Figure 8 presents the throughput of the FIO benchmark.

Before defragmentation, CFQ provides less I/O resources to
the FIO workload than its share whereas BFQ and IOCost
provides more I/O resources than its share. However, defrag-
mentation can mitigate the unfair I/O sharing of I/O control
mechanisms by eliminating request splitting and minimiz-
ing resource conflicts inside the storage device. In particular,
BFQ achieves nearly ideal I/O proportionality after defrag-
mentation.

5 DISCUSSION
As shown in the paper, defragmentation can promptly re-
lieve the scheduling failures caused by fragmentation. How-
ever, since defragmentation generates additional write op-
erations, it incurs several problems in practice. First, the
additional write operations can curtail the device lifespan.
Second, defragmentation can degrade the co-running appli-
cations, which is detrimental to consolidated environments.
To mitigate these overheads, several studies have been pro-
posed in recent years. For example, to minimize the amount
of writes, FragPicker [27] migrates only a certain portion of
data that can benefit from defragmentation. Janusd [14] is a

copyless defragmentor, which utilize a device-level remap
operation to migrate data.
In addition to the previous efforts for minimizing the

amount of writes, we argue that defragmentation should
be applied in a different manner, depending on I/O control
mechanisms. This paper observed that fragmentation with
CFQ degrades the performance of applications that are ac-
tually accessing the fragmented files. On the other hand,
fragmentation with BFQ/IOCost degrades even the perfor-
mance of other unrelated applications. Therefore, to improve
the performance of high-priority applications with BFQ and
IOCost, we should check the fragmentation states of other
applications as well as the high-priority ones. Also, to mini-
mize the performance interference of defragmentation with
high-priority applications, it can be a possible method to
have the defragmentation process in its own cgroup and
regulate its I/O rate, or attribute the I/Os for data migration
to the owner cgroup as with the experiments in this paper.
Finally, analyzing proper data area for migration can de-

crease the amount of writes for defragmentation. As Park
et al. [27] argued, request splitting can be a primary factor
in performance degradation incurred by fragmentation on
some SSDs. In such cases, migrating only certain fragmented
data that causes request splitting can reduce the amount of
writes for defragmentation. Similarly, since the frequency of
data accesses is not always uniform in practice, not all data
is equally critical to the application performance. Therefore,
we believe that identifying hot data (frequently accessed)
for migration either at the system call layer [27] or at the
block layer can efficiently minimize the amount of writes for
defragmentation.

6 CONCLUSION
In this paper, we analyze file fragmentation from the per-
spective of I/O control. We discover that various I/O control
mechanisms fail to achieve their goals for different reasons,
when they meet fragmentation. Also, we prove that defrag-
mentation can be one of the options for promptly solving
such problems. We believe the experimental results in this
paper will be helpful to those who design a new I/O con-
trol mechanism or address fragmentation-related issues in
consolidated environments.

ACKNOWLEDGMENTS
We thank our shepherd, Joo-young Hwang, and the anony-
mous HotStorage reviewers for their invaluable feedback.
This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2015-0-00284,
(SW Starlab) Development of UX Platform Software for Sup-
porting Concurrent Multi-users on Large Displays).

131

File Fragmentation from the Perspective of I/O Control HotStorage ’22, June 27–28, 2022, Virtual Event, USA

REFERENCES
[1] BFQ (Budget Fair Queueing). https://www.kernel.org/doc/html/latest/

block/bfq-iosched.html.
[2] block-throttle: proportional throttle. https://lwn.net/Articles/676823/.
[3] CFQ (Complete Fair Queueing). https://www.kernel.org/doc/

Documentation/block/cfq-iosched.txt.
[4] Cgroup Abstraction Layer. https://source.android.com/devices/tech/

perf/cgroups.
[5] Cgroups. https://www.kernel.org/doc/Documentation/cgroup-v1/

cgroups.txt.
[6] Cgroups v2. https://www.kernel.org/doc/Documentation/cgroup-v2.

txt.
[7] Introduce io.latency io controller for cgroups. https://lwn.net/Articles/

758697/.
[8] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2009. Generating realistic impressions for file-system bench-
marking. In Proc. USENIX FAST. 125–138.

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. ACM SIGOPS Operat. Syst. Rev. 37, 5 (2003),
164–177.

[10] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understand-
ing intrinsic characteristics and system implications of flash memory
based solid state drives. In Proc. ACM SIGMETRICS. 181—-192.

[11] Alex Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang
Zhan, Jun Yuan, Michael A. Bender, Rob Johnson, Bradley C. Kuszmaul,
Donald E. Porter, and Martin Farach-Colton. 2017. File systems fated
for senescence? nonsense, says science!. In Proc. USENIX FAST. 45–58.

[12] Giel de Nijs, Ard Biesheuvel, Ad Denissen, and Niek Lambert. 2006.
The effects of filesystem fragmentation. In Proc. OLS. 193–208.

[13] Congming Gao, Liang Shi, Kai Liu, Chun Jason Xue, Jun Yang, and
Youtao Zhang. 2020. Boosting the performance of ssds via fully ex-
ploiting the plane level parallelism. IEEE Trans. Parallel Distrib. Syst.
31, 9 (2020), 2185–2200.

[14] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin Chang, Inhyuk
Yee, Liang Shi, Chun Jason Xue, and Jihong Kim. 2017. Improving
file system performance of mobile storage systems using a decoupled
defragmenter. In Proc. USENIX ATC. 759–771.

[15] Mohammad Hedayati, Kai Shen, Michael L Scott, and Mike Marty. 2019.
Multi-queue fair queuing. In Proc. USENIX ATC. 301–314.

[16] Tejun Heo, Dan Schatzberg, Andrew Newell, Song Liu, Saravanan
Dhakshinamurthy, Iyswarya Narayanan, Josef Bacik, Chris Mason,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. IOCost: Block io
control for containers in datacenters. In Proc. ACM ASPLOS. 595–608.

[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A platform for fine-grained resource sharing in the data center..
In Proc. USENIX NSDI. 295–308.

[18] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren.
2013. Exploring and exploiting the multilevel parallelism inside ssds
for improved performance and endurance. IEEE Trans. on Comput. 62,
6 (2013), 1141–1155.

[19] Cheng Ji, Li-Pin Chang, Sangwook ShaneHahn, Sungjin Lee, Riwei Pan,
Liang Shi, Jihong Kim, and Chun Jason Xue. 2018. File fragmentation
in mobile devices: measurement, evaluation, and treatment. IEEE Trans.
on Mobile Computing 18, 9 (2018), 2062–2076.

[20] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting widely held
ssd expectations and rethinking system-level implications. SIGMET-
RICS Perform. Eval. Rev. 41, 1 (2013), 203–216.

[21] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gregory R. Ganger. 2018.
Geriatrix: Aging what you see and what you don’t see. A file system

aging approach for modern storage systems. In Proc. USENIX ATC.
691–703.

[22] Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, and Kesari
Mishra. 2020. Countering fragmentation in an enterprise storage
system. ACM Trans. Storage 15, 4 (2020), 1–35.

[23] J. Kim, E. Lee, and S. H. Noh. 2016. I/O scheduling schemes for better i/o
proportionality on flash-based ssds. In Proc. IEEE MASCOTS. 221–230.

[24] Miryeong Kwon, Donghyun Gouk, Changrim Lee, Byounggeun Kim,
Jooyoung Hwang, and Myoungsoo Jung. 2020. Dc-store: Eliminating
noisy neighbor containers using deterministic i/o performance and
resource isolation. In Proc. USENIX FAST. 183–191.

[25] Jonathan Mace, Peter Bodik, Madanlal Musuvathi, Rodrigo Fonseca,
and Krishnan Varadarajan. 2016. 2dfq: Two-dimensional fair queuing
for multi-tenant cloud services. In Proc. ACM SIGCOMM. 144–159.

[26] Jonggyu Park and Young Ik Eom. 2020. Anti-aging lfs: Self-
defragmentation with fragmentation-aware cleaning. IEEE ACCESS 8
(2020), 151474–151486.

[27] Jonggyu Park and Young Ik Eom. 2021. Fragpicker: A new defragmen-
tation tool for modern storage devices. In Proc. ACM SOSP. 280–294.

[28] Jonggyu Park and Young Ik Eom. 2021. Weight-aware cache for
application-level proportional i/o sharing. IEEE Trans. Comput. (2021),
1–14.

[29] Jonggyu Park, Dong Hyun Kang, and Young Ik Eom. 2016. File de-
fragmentation scheme for a log-structured file system. In Proc. ACM
APSys. 1–7.

[30] Jonggyu Park, Kwonje Oh, and Young Ik Eom. 2020. Towards
application-level I/O proportionality with a weight-aware page cache
management. In Proc. IEEE MSST. 1–11.

[31] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang,
Sara McMains, and Venkata Padmanabhan. 1995. File system logging
versus clustering: A performance comparison. In Proc. USENIX ATC.
1–21.

[32] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Perfor-
mance isolation and fairness for multi-tenant cloud storage. In Proc.
USENIX OSDI. 349–362.

[33] Keith A. Smith andMargo I. Seltzer. 1997. File system aging—increasing
the relevance of file system benchmarks. In Proc. ACM SIGMETRICS.
203–213.

[34] Shanjiang Tang, Bu-Sung Lee, and Bingsheng He. 2016. Fair resource
allocation for data-intensive computing in the cloud. IEEE Transactions
on Services Computing 11, 1 (2016), 20–33.

[35] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie
Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan
Gómez-Luna, and Onur Mutlu. 2018. FLIN: Enabling fairness and
enhancing performance in modern nvme solid state drives. In Proc.
ACM/IEEE ISCA. 397–410.

[36] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM
Martins, Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H
Leung, and Larry Smith. 2005. Intel virtualization technology. IEEE
Comput. 38, 5 (2005), 48–56.

[37] Werner Vogels. 2008. Beyond Server Consolidation: Server consolida-
tion helps companies improve resource utilization, but virtualization
can help in other ways, too. ACM Queue 6, 1 (2008), 20–26.

[38] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021. D2FQ:
Device-direct fair queueing for nvme ssds. In Proc. USENIX FAST. 403–
415.

[39] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019.
Towards an unwritten contract of intel optane SSD. In Proc. USENIX
HotStorage. 1–8.

132

https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://lwn.net/Articles/676823/
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://source.android.com/devices/tech/perf/cgroups
https://source.android.com/devices/tech/perf/cgroups
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://lwn.net/Articles/758697/
https://lwn.net/Articles/758697/

	Abstract
	1 Introduction
	2 Background
	2.1 Cgroup and I/O Control
	2.2 Fragmentation and Its Negative Influence

	3 Failure of I/O Control due to Fragmentation
	4 Defragmentation as a Remedy of Scheduling Failure
	4.1 Homogeneous Workloads
	4.2 Heterogeneous Workloads

	5 Discussion
	6 Conclusion
	References

