
Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express Link for
Memory Expansion (CXL-SSD)

Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory,

Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

ABSTRACT
Compute express link (CXL) is the first open multi-protocol
method to support cache coherent interconnect for differ-
ent processors, accelerators, and memory device types. Even
though CXL manages data coherency mainly between CPU
memory spaces and memory on attached devices, we argue
that it can also be useful to reform existing block storage as
cost-efficient, large-scale working memory. Specifically, this
paper examines three different sub-protocols of CXL from a
memory expander viewpoint. It then suggests which device
type can be the best option for PCIe storage to bridge its
block semantics to memory-compatible, byte semantics. We
then discuss how to integrate a storage-integrated memory
expander into an existing system and speculate how much
effect it does have on the system performance. Lastly, we visit
various CXL network topologies and explore a new opportu-
nity to efficiently manage the storage-integrated, CXL-based
memory expansion.

1 INTRODUCTION
Cache coherence interconnects are recently emerged to inte-
grate different CPUs, accelerators, and memory components
into a heterogeneous, single computing domain. Specifically,
the interconnect technologies maintain data coherency be-
tween CPU memory and private memory attached to devices,
defining a new type of globally shared memory and network
space. While there have been several efforts to coherently
connect different hardware components, such as Gen-Z [1]
and CCIX [2], Compute Express Link (CXL) is the first open
interconnect protocol supporting various types of processors
and device endpoints [3]. CXL has absorbed Gen-Z [4] and
has become one of the most promising interconnect interfaces
thanks to its high-speed coherence control and full compati-
bility with the existing bus standard, PCIe. A broad spectrum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539744

of datacenter-scale hardware such as CPU, GPU, FPGA, and
domain-specific ASIC is thus expected to take significant
advantage of CXL [5–7]. CXL consortium announces that it
can also disaggregate memory by pooling DRAM and byte-
addressable persistent memory (PMEM).

While CXL can handle diverse computing resources and
memory components, it sets block storage aside and leaves a
question on whether the storage can reap the benefits of CXL
or not. A primary question that storage designers and system
architects may have is i) why and what can the block storage
benefit from CXL?. If there is an advantage, we should be able
to answer the following questions: ii) how can we connect the
underlying block storage to the host’s system memory bus?,
iii) what kind of CXL device type should be used for the block
storage and memory expander?, and iv) what does CXL need
to improve for better utilization of the block storage?.

In this paper, we argue that CXL is helpful in leveraging
PCIe-based block storage to incarnate a large, scalable work-
ing memory by answering all the four questions mentioned
above. We believe CXL is a cost-effective and practical in-
terconnect technology that can bridge PCIe storage’s block
semantics to memory-compatible, byte semantics. To this end,
we should carefully integrate the block storage into its inter-
connect network by being aware of the diversity of device
types and protocols that CXL supports. This paper first dis-
cusses what a mechanism makes the PCIe storage impractical
and unable to be used for a memory expander (§2). Then, we
explore all the CXL device types and their protocol interfaces
to answer which configuration would be the best for the PCIe
storage to expand the host’s CPU memory (§3).

Even though CXL can be the most promising interface for
the block storage in getting closer to CPU, it is non-trivial
to speculate how much effect a storage-integrated memory
expander does have on system performance. As there is no
CPU and fabric for CXL yet, it is also unclear for the storage
designers and system architects to see how CXL-enabled
storage can be implemented and interact with CPU. To answer
this, we discuss what a PCIe storage device needs to change,
how it can be connected to the host over CXL, and how users
can access the device through load/store instructions (§4).
We then project the performance of the storage-integrated
memory expander by prototyping CXL agents and controllers
in different FPGA nodes, all connected by a PCIe network.

45

https://doi.org/10.1145/3538643.3539744

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Myoungsoo Jung

After examining the potential benefits of converting the
block semantic to byte semantic over CXL, we further discuss
how to disaggregate PCIe storage resources from computing
resources using CXL (§6). In particular, we visit three differ-
ent network topologies and argue the pros and cons of each
disaggregation option. We lastly explore a new opportunity
to manage the PCIe storage efficiently at the host-side (§7).
Specifically, we suggest two additional states, determinism
and bufferability, and debate why these additional states can
be beneficial to handle the PCIe storage in expanding the
host’s CPU memory with CXL.

2 WHY CXL FOR PCIE STORAGE
Byte-addressability. It is a long-standing dream for PCIe
storage to have byte-addressability and be a part of working
memory devices [8–17]. For example, an industry prototype
and NVMe standard [18–20] offer the byte-addressability by
exposing SSD’s internal memory/buffer to PCIe base address
registers (BARs). Since BARs can be directly mapped to the
system memory space, the host-side kernel and applications
can access the exposed memory/buffer resources just like the
local memory (using load/store instructions) rather than block
storage. To hide long latency imposed by SSD’s backend
block media (e.g., Z-NAND, Flash, Optane SSD), they can
use the internal memory/buffer as a write-back inclusive cache
of the backend [21–25].
Limits with non-cacheable accesses. PCIe bandwidth is fast
enough to be far memory (e.g., 63GB/s∼121GB/s for Gen5/6
16× [26]). However, PCIe considers the block storage devices
as just one of the peripherals that the host-side CPU needs
to manage and communicate with. Thus, while the storage
devices can handle load/store requests through the PCIe’s
BARs, they are all limited to being used as working mem-
ory in a real system. Specifically, as the memory-mapped
BARs are only the interface for the host to let the under-
lying storage know what it requests or controls, CPU must
make the load/store requests uncached and directly acces-
sible. This non-cacheable characteristic severely degrades
the performance of all memory accesses targeting the BARs.
If CPU can cache/buffer the memory requests targeting the
PCIe address space, there is no way for the PCIe storage to
catch their arrivals. This can introduce an unexpected situ-
ation such as a system failure or storage disconnection. To
prevent such a failure, x86 instruction set architectures of both
Intel and AMD do not allow PCIe-related memory requests to
be cached at the CPU side. Unfortunately, this nature enforces
the storage-integrated memory expanders be excluded from
the conventional memory hierarchy and disables them from
taking advantage of CPU caches.
Compute express link. CXL is a cache coherent interconnec-
tion technology, designed initially toward supporting various

accelerators and memory devices therein [3]. Specifically,
CXL can offer one or more memory address spaces in the
PCIe network domain coherently, which can consistently be
accessed by different processors and hardware accelerators
over its multi-protocol technology. The multi-protocol over-
rides the I/O semantic of the existing PCIe interface, thereby
making all device types of CXL compatible with most exist-
ing PCIe devices, including SSDs. We will explain details of
each device type in §3.

Even though CXL is built upon PCIe, it basically guar-
antees that all the caches across different computing com-
plexes in the same CXL hierarchy are coherent. This can
make the load/store requests (heading to the PCIe address
space) cacheable in contrast to PCIe. The current CXL con-
siders only DRAM or PMEM for its memory pooling, but we
advocate that CXL can open a new door that changes PCIe
storage’s block interface to a memory-like, byte interface. As
CXL’s multi-protocol can integrate PCIe storage into its cache
coherent memory space, it can create a much bigger memory
pool than DRAM-based or PMEM-based memory expansion
technologies.

3 MULTI-PROTOCOL AND CXL DEVICES
CXL provides three different sub-protocols, i) CXL.io, ii)
CXL.mem, and iii) CXL.cache, which can also define three
different types of CXL devices (Type 1∼Type 3).
Multi-protocol. CXL.io is the fundamental protocol that all
CXL-attached devices and host CPUs require to communi-
cate. Fundamentally, it employs full features of PCIe as a
non-coherent load/store interface for I/O devices (e.g., device
discovery/enumeration and host address configuration). To
this end, CXL.io amends PCIe’s hierarchical communication
layers and creates a high-speed I/O channel, called FlexBus.
FlexBus converts received CXL data to an appropriate for-
mat to leverage the physical PCIe layers (e.g., transaction,
data, and link). On the other hand, CXL.cache and CXL.mem
respectively add coherent cache and memory access capa-
bilities into FlexBus, which can fan out to support multiple
device domains and remote memory management. While
CXL overrides PCIe, its root port (CXL RP) allows one or
more memory addresses (exposed by the underlying CXL
devices) to be mapped to a target host’s cacheable system
memory space. While this capability is designed toward uni-
fying multi-domain memory devices into a single pool over
coherent cache management, it can be leveraged for a memory
expander using different storage technologies.
CXL device types. Based on how to combine the multi-
protocol features of CXL, it declares three different device
types, Type 1, Type 2, and Type 3. Figure 1a shows all the
CXL device types and the protocols each device type uses.

46

Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express Link for Memory Expansion HotStorage ’22, June 27–28, 2022, Virtual Event, USA

���
��

���	

��
��
�
�
��
	
��

�
�
��

�
�
�
��
��
�
�

�����
����

���

���

��������
�������

�������
��	��
������ ���

���

��������

�������

��

��

������
���������

�	 �!�

����"

����
����!���	!

❶

❷

❸

❹�

�
�
�
������

	
�	
�
	

�����

��

���	#

���	$

���	

�	 �!�

�	 �!�

���

��%

��	������
�������

��������������	�

�
���

�����

�����
����

���

���

�	 �!�

(a) Protocols and devices. (b) System memory mapping.

Figure 1: CXL multi-protocol and system map.

Type 1 is CXL devices that have a local cache without
employing an internal DRAM component. Type 1 is valuable
if the endpoint device requires a fully coherent cache, which
implies that the device can access the corresponding host’s
memory data through its own caches in an active manner.
Most domain-specific accelerators for computationally inten-
sive applications, such as tensor processing units [27], can be
classified by this Type 1 device. Note that Type 1 devices use
CXL.cache and CXL.io to manage their full cache coherence
capability.

Type 2 is for discrete acceleration devices that internally
employ high-performance memory modules. These memory
components are referred to as host-managed device memory
(HDM) in CXL. While the host can, in default, communicate
with Type 2 devices using CXL.io (over PCIe), CXL.cache
and CXL.mem are respectively used for the device to access
its host-side memory and for the host to access HDM. Note
that HDM differs from private memory modules employed by
conventional acceleration devices such as GPUs. Even though
a host can access GPU’s device-side memory (e.g., GDDR),
it is only performed by legacy memory copies. In contrast, a
CXL-enabled host can manage HDM using cache-coherent
load/store instructions. It is also expected for Type 2 devices
to actively access the host’s CPU memory by utilizing all the
features that CXL’s multi-protocol supports.

Lastly, Type 3 is designed for non-acceleration devices
that only employ HDM without a processing component.
CXL regulates these Type 3 devices operate primarily with
CXL.mem to serve load/store requests issued by a host; it does
not allow the Type 3 devices to make a request (to the host)
over CXL.cache. While Type 3 does not employ CXL.cache,
it can be used for expanding the host-side memory. This is
because CXL.mem includes basic memory read and write
interfaces for HDM. We will explain how to use HDM in §3.
Note that CXL allows the Type 3 devices to manage CXL.io
at the device side in an attempt to accommodate various I/O
specific demands in a flexible manner.

4 INTEGRATING STORAGE INTO CXL
Device type consideration. Generally speaking, PCIe storage
is not a simple, passive device. In addition to its backend’s

block media, PCIe storage employs large internal DRAMs
to buffer/cache incoming requests and corresponding data. It
also has computation capability used for diverse data process-
ing tasks such as address translation or reliability management
[28–32]. Type 2 can probably be a good option for utilizing
HDM and/or integrating data processing capabilities into the
storage by being aware of the semantics of host CPUs. In this
paper, we however advocate Type 3 for a storage-integrated
memory expander in CXL.

There are three reasons why we believe that Type 3 de-
vices are better than Type 2 devices for the storage-integrated
memory expander. First, even though Type 2 allows the host
to handle the storage-side HDM directly, Type 2 is designed
for computationally intensive applications. Because of this,
only one device (per CXL RP) can be connected to a host
system, which makes Type 2 devices not scalable as Type 3 de-
vices can do. Second, having full features of CXL.cache and
CXL.mem can introduce another type of communication bur-
den, thereby degrading the overall performance of the storage-
integrated memory expander. Specifically, all load/store re-
quests require checking the cache states of PCIe storage’s
computing complex, which exhibits multiple CXL transac-
tions for every I/O service. Even though it is crucial for the
PCIe storage to manage internal DRAM efficiently, it does not
require coherently managing the host’s CPU caches. Third,
if we integrate a PCIe storage device into CXL as Type 2,
the device should ask permission from the host whenever the
storage side computing resources access its memory. This is
because Type 2’s CXL.cache manages both the host’s local
memory and HDM in a fully coherent manner, which makes
the device-level I/O performance even worse than before.
Storage-side modification. PCIe storage devices typically
employ a PCIe endpoint and NVMe controllers to parse the in-
coming requests and transfer data between a host and SSD’s
internal DRAMs [33, 34]. Thus, a hardware change at the
storage side can be simple, which in turn makes most storage
devices easily support Type 3 with a minor modification. For
example, we can compose a CXL storage controller to handle
CXL transaction packet formatting and CXL.io control by
leveraging the existing PCIe endpoint logic. Similarly, the
existing NVMe controller’s capabilities, such as command
parsing and page memory copies, can be simplified to im-
plement the read and write interfaces of CXL.mem. Note
that the NVMe specification allows PCIe storage to realize
its controllers in either firmware or hardware [35, 36]. How-
ever, we believe it is better to automate the service routine
of CXL.mem’s reads and writes over hardware while letting
firmware manage the internal DRAMs and the back-end block
media.
System integration. Figure 1b shows how CXL can connect
a PCIe storage device to a host and explains how the host-side
users directly access the storage device through load/store

47

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Myoungsoo Jung

instructions. In this example, the host’s system bus employs
a CXL RP connecting a PCIe storage device as Type 3; we
will discuss a system option to disaggregate many storage
devices from the host resources in §6. When the host boots, it
enumerates CXL devices connected to its RP and initializes
the devices by mapping their internal memory spaces to the
system memory. Specifically, the host retrieves the size of
CXL BAR and HDM from the PCIe storage devices and then
maps them into its system memory space (CXL RP reserved).
In particular, HDM is mapped to a cacheable memory ad-
dress space such that the users can access it using load/store
instructions. As CXL BAR and HDM are mapped to differ-
ent addresses from what a Type 3 device initially manages,
the CXL RP requires letting the underlying CXL controller
know where they have been mapped [1]. The host can do
this address space synchronization by writing the correspond-
ing information (e.g., remapped address offset) to the target
storage’s CXL capability/configuration areas.

When an application loads or stores data on the system
memory (mapped to HDM), CXL RP generates a message,
called CXL flit, and sends it to the target’s CXL storage con-
troller via CXL.mem [2]. The underlying endpoint and CXL
controllers then parse the flit and extract the request infor-
mation (e.g., command and target address) [3]. Using the
request information, the controllers can serve the data by
collaborating with underlying storage firmware [4].

5 PERFORMANCE PROJECTION
Prototype. Since there is unfortunately no processor com-
plex that yet supports CXL.mem and CXL.io, we prototype
a CXL-enabled CPU and CXL storage, each taking the role
of a host and storage-integrated memory expander. Specifi-
cally, the CPU and storage are fabricated into two separate,
custom FPGA boards, which are connected through a tailored
PCIe backplane. We integrate CXL.mem and CXL.io agents
into an in-house RISC-V CPU (64-bit O3 dual-core architec-
ture that uses 128KB L1 and 4MB L2 caches), and 32GB
OpenExpress-based NVMe storage [24] in 16nm FPGA for
the host node and storage node, respectively. OpenExpress’s
backend media emulates Z-NAND [37] while buffering the
incoming CXL requests into its internal DRAMs. In addition
to this prototype (CXL), we evaluate a local DRAM-only sys-
tem (DRAM) and PCIe-based memory expander (PCIe). PCIe
and CXL use the same backend storage, but their RP’s address
is mapped to different places of the host’s system memory.
Workloads. We use Apex-Map, a global memory access
benchmark for large-scale computing [38]. The benchmark
allows us to test underlying memory with different locality
and request size levels (i.e., the parameter, α). We configure
the request size as 64B, which is the same as the last-level
cacheline size of our CPU. In this performance projection, we

555.7

4.29 1.73
PCIe CXL DRAM

0
100
200
300
400
500
600

La
te

nc
y

(c
yc

le
s)

555.7

179.75

19.2
PCIe CXL DRAM

0
100
200
300
400
500
600

La
te

nc
y

(c
yc

le
s)

555.7

344.9

4.1
PCIe CXL DRAM

0
100
200
300
400
500
600

La
te

nc
y

(c
yc

le
s)

(a) α = 0.001. (b) Average α . (c) α = 1.
Figure 2: Performance of different memory systems.

exclude time-consuming activities of internal tasks such as
garbage collection; we will discuss how CXL can alleviate the
long latency imposed by such internal tasks in §7. Apex-Map
generates 512 million memory instructions synthetically by
ranging α from 0.001 (highest locality) to 1 (lowest locality).
Result analysis. Figures 2a, 2b, and 2c show each system’s
latency (in terms of CPU cycles) for the best case (α = 0.001),
the average case (0.001 ≤ α ≤ 1), and the worst case (α = 1),
respectively. The best-case performance shows the reason
why CXL can be more beneficial than a PCIe-based memory
expander. While most memory requests in this test are hit
from the CPU caches, PCIe cannot take any advantage of the
host CPU caches, thereby exhibiting 129.5× longer latency
than CXL. In contrast, CXL enjoys the CPU caches and shows
excellent latency behaviors comparable with DRAM.

CXL is also better than PCIe by 3× for the average case.
Note that, even though the performance of CXL is 9.3× worse
than that of DRAM, we believe it is still in a reasonable range
by considering the fact that CXL leverages the block storage.
When there is no locality (the worst-case), CXL cannot hide
the underlying Z-NAND latency because of the benchmark’s
access pattern (fully random), which exhibits 84.1× worse
than DRAM. However, CXL shows still better performance com-
pared to PCIe by 1.6× as it does not handle all the memory
requests (on PCIe’s BAR) in a synchronized fashion.

We are somewhat disappointed with the results as CXL’s
worst-case latency characteristics are far away from DRAM’s
behaviors. However, most workloads exhibit high locality
except for a specific application like graph processing. Con-
sidering the large capacity that the storage-integrated memory
expander offers, we believe many applications can reap the
benefits of CXL. We also believe that there is an opportunity
to optimize this long latency by wisely using PCIe storage’s
internal DRAMs and backend block media (§7).

6 STORAGE DISAGGREGATION
This section discusses how a system can disaggregate CXL
controllers and storage devices from its computing resources
while keeping their byte-addressability.
Pooling storage over the byte interface. To make the inter-
connect network scalable, CXL 2.0 allows FlexBus to employ
one or more CXL switches, each being able to have multiple

48

Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express Link for Memory Expansion HotStorage ’22, June 27–28, 2022, Virtual Event, USA

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�����	

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���	

���	
���	

���

���

���

���

�

�

�

�

�

�

�

�

�

���	

��� ���

�

�

�

�

�

�

�

�

�

	

	

�

�

��������

	�
�������

��������

	�
�������

(a) Switch. (b) Multi-switch. (c) Virtual hierarchy.
Figure 3: Storage disaggregation configurations.

upstream ports (USPs) and downstream ports (DSPs). Even
though CXL yet leaves a question undecided on how to imple-
ment a switch and its internal components, USPs and DSPs
can be simply interconnected by a reconfigurable crossbar
switch. Specifically, a USP can be connected to a CXL RP or
another switch’s DSP over FlexBus, and it internally returns
the incoming message to one or more underlying DSPs as
soon as possible. In contrast, a DSP links a lower-level hard-
ware module such as a storage device’s CXL endpoint or a
different switch’s USP. Using a switch buffer, it can control
multiple CXL messages going through the DSP(s).

Figure 3a shows how a host can expand its local mem-
ory by having multiple storage devices. Specifically, each
DSP connects to a different storage device, whereas a USP
is linked to all the DSPs and exposes them to the host’s CXL
RP. For this type of storage-integrated memory expansion, the
host should map each HDM to different places of its physical
memory and be aware of the mapping information when the
system enumerates CXL devices to configure CXL capabil-
ity/configuration (BAR/HDM). While this network topology
is simple enough to connect multiple PCIe storage devices,
the number of lanes that a CXL switch can support is limited.
Typically, a switch supports 64∼128 lanes, and thus, only
4∼8 ports are available for high-performance storage devices
(using 16 lanes). In this case, as shown in Figure 3b, it can
expand the host memory by adding one or more switches to
the CXL network. The top switch is used to bridge the host’s
CXL RP and all other lower-level switches, while the leaf
switches are employed to manage many PCIe storage devices.
Note that the number of storage devices that a network can
handle varies based on the size of the devices and the memory
capacity that CXL deals with (currently, it is 4PB).
Multi-host connection management. To better utilize the
storage resources, we can also connect arbitrary numbers of
host CPUs to the CXL network. Since the switch’s crossbar
(called fabric manager) remembers each connection between
USPs and DSPs, we can fabricate a unique routing path begin-
ning from a host to one or more storage devices, called virtual
hierarchy (VH). Each VH guarantees that a storage device
can be mapped to a host, which is attached anywhere in the
CXL network. Thus, VHs allow the system to completely
disaggregate many PCIe storage devices from its multi-host

computing resources for the memory expansion. While these
reconfigurable VHs can realize a fully scale-out architecture,
memory resources expanded by the storage devices are un-
fortunately tricky to control finely. Since the storage device
should only be associated with a host, it can be underutilized
and/or unbalanced across different CPUs.
Storage device virtualization. To address this issue, we can
virtualize each storage device to be shared by different hosts.
Specifically, as shown in Figure 3c, CXL allows a system to
logically splits each endpoint into multiple Type 3 devices (up
to 16), called multiple logical device (MLD). Thus, we can
make each MLD define its own HDM, which can be mapped
to a different place of any host of system memory, similar
to a physical storage device. As each MLD associated with
the same storage device can be a part of different VHs, it is
expected to utilize the underlying storage resources better by
allocating the memory expanders in a fine granular manner.

A disadvantage of multi-host VHs can be bandwidth shar-
ing and/or traffic congestion. To support MLDs, PCIe storage
may require partitioning the underlying backend and internal
DRAMs, lowering the level of parallelism, and this can un-
fortunately reduce the bandwidth of each MLD. In addition,
as a single storage device (and a CXL switch) can be shared
by multiple hosts, the endpoint’s fabric can be congested
more than before. Since the performance of this multi-host
memory expansion varies based on diverse perspectives and
hardware configurations of CXL, it does need careful network
and storage designs.

7 EXTENSION FOR STORAGE CONTROL
As CXL’s Type 3 is designed for memory pooling, not block
storage, there are two issues that we can further consider and
discuss: i) latency fluctuation and ii) data persistence.

CXL.mem and CXL.io do not strictly manage the turn-
around time of loads/stores as their CXL memory requests
can be served asynchronously. However, long latency is still
undesirable and can degrade the host’s overall performance.
For example, the PCIe storage device that we used for the
performance projection assumes that there are no internal
tasks (§5). The latency of internal tasks varies based on how
firmware operates, but all they can make the responsiveness
significantly worse than usual. In addition, if host-side li-
braries such as PMDK [39] insist on data persistence, the cur-
rent flushing mechanism of CXL can be insufficient to handle
the underlying PCIe storage. Specifically, CXL provides a
global persistent flush (GPF) register, which enforces all data
residing in the CXL network and SSD’s internal DRAMs to
be immediately written back to the backend media. This can
also make latency behaviors of the storage-integrated memory
expander(s) severely longer.

49

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Myoungsoo Jung

To overcome this, we suggest two simple features, i) deter-
minism and ii) bufferability, which can be annotated to CXL
messages and hint the host semantic to the underlying CXL
controllers. Note that CXL allows Type 3 to manage CXL.io
for diverse I/O specific demands (§3), and CXL.mem has a
reserved field, which can be used for the annotation.
Latency and persistence controls. Determinism can be de-
fined by two states, deterministic (DT) and non-deterministic
(ND). DT means a host wants Type 3 devices to serve the
tagged request without internal task involvement, whereas
ND makes the corresponding requests fire-and-forget. For
example, if DT is specified, the target storage can schedule
one or more internal tasks to operate with the subsequent re-
quests (annotated by ND) or in idles. Bufferability can also be
composed by two states, bufferable (BF) and non-bufferable
(NB). When BF is annotated, the corresponding requests can
be cached or buffered in SSD’s internal DRAMs, while the
requests annotated by NB consider persistence as first-class
citizens for their service. PCIe storage can then selectively
write the requests back to its block media, which can avoid
the situation where globally flushing all data (sitting on its
large, internal DRAMs) to the block media at a time.
User scenarios. To cover diverse user scenarios, determin-
ism, bufferability, and GPF can be used in either an individ-
ual or a combination (e.g., BF+DT, BF+ND, NB+DT, and
NB+ND). For example, databases and transactional memories
(e.g., libpmem and libpmemobj) log the data when a trans-
action begins. Since the data associated with the log is not
necessary to be persistent before its commit, the host can log
the transactions with either BF+ND or NB+ND. During this
time, the storage can secure a time to perform internal tasks
by buffering all incoming writes. When there is a transaction
commit, it can configure GPF to flush all buffered data and
write the commit (if needed) with NB+DT.

Since an operator of most instructions waits for its operand
arrivals, loads can typically take advantage of DT. However,
if there is no subsequent instruction that uses a result of
the instruction issued in the previous (i.e., read-after-write
dependency), the current loads do not need to be synchronized.
We can thus precisely use BF+DT or BF+ND for the loads,
which allows the storage to prefetch the data into its internal
DRAMs. For example, since data are somewhat engaged with
spatial/temporal localities in a loop code segment (e.g., matrix
calculation), we can let the storage know that the data will be
hit by the internal DRAMs sooner or later again.

Another use scenario to take advantage of the annotation
is lock and synchronization management. Their mechanisms
(e.g., spin, fence, and barrier) do not need persistence in
most cases, but the latency is the matter. For example, a spin-
lock uses an atomic instruction such as compare-and-swap or
compare-and-exchange, which is composed of a memory read
and a write. While the spinlock does not place its parameters

in the CPU cache, the corresponding atomic instruction keeps
iterating to access the same memory address. Thus, it would
be better for both the loads/stores to access Type 3 devices
with BF+DT. Memory fences and barriers are also similar
to the spinlock as their lifetime is bounded to the running
process rather than the data.

8 CONCLUSION AND FUTURE WORK
This paper examines CXL from a memory expander view-
point and explores different configurations to transfer PCIe’s
block semantic to memory-compatible byte semantic. As our
performance projection is imperfect and limited to studying
diverse perspectives of a storage-integrated expander, we con-
sider extending this work by accommodating various software
and hardware environments. We also believe that the several
characteristics of CXL-based memory expansion that this pa-
per discussed will lead to many architectural changes in both
software and hardware, which can be worthwhile to study in
the near future.

REFERENCES
[1] Gen-Z Consortium. Gen-Z Final Specifications. https://genzconsortium.

org/specifications/.
[2] CCIX Consortium. CCIX Base Specification 1.1. https://www.

ccixconsortium.com/library/specification/.
[3] CXL Consortium. Compute Express Link Specification Revision 2.0.

https://www.computeexpresslink.org/download-the-specification.
[4] Gen-Z Consortium. Exploring the Future: CXL Consortium and Gen-Z

Consortium Sign Letter of Intent to Advance Interconnect Technology.
https://bit.ly/3tXPIod.

[5] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. Clio: A hardware-software co-designed disaggregated memory
system. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2022.

[6] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking software run-
times for disaggregated memory. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[7] Zixuan Wang, Joonseop Sim, Euicheol Lim, and Jishen Zhao. En-
abling efficient large-scale deep learning training with cache coherent
disaggregated memory systems. In Proceedings of The 28th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2022.

[8] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh,
Nam Sung Kim, Mahmut Taylan Kandemir, and Myoungsoo Jung.
Revamping storage class memory with hardware automated memory-
over-storage solution. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (ISCA), 2021.

[9] Changmin Lee, Wonjae Shin, Dae Jeong Kim, Yongjun Yu, Sung-
Joon Kim, Taekyeong Ko, Deokho Seo, Jongmin Park, Kwanghee Lee,
Seongho Choi, Namhyung Kim, Vishak G, Arun George, Vishwas
V, Donghun Lee, Kangwoo Choi, Changbin Song, Dohan Kim, Insu
Choi, Ilgyu Jung, Yong Ho Song, and Jinman Han. Nvdimm-c: A
byte-addressable non-volatile memory module for compatibility with

50

https://genzconsortium.org/specifications/
https://genzconsortium.org/specifications/
https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/library/specification/
https://www.computeexpresslink.org/download-the-specification
https://bit.ly/3tXPIod

Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express Link for Memory Expansion HotStorage ’22, June 27–28, 2022, Virtual Event, USA

standard ddr memory interfaces. In 2020 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2020.

[10] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,
Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. Flatflash: Exploiting
the byte-accessibility of ssds within a unified memory-storage hierar-
chy. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[11] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Write dependency
disentanglement with {HORAE}. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[12] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam
Belay. {AIFM}:{High-Performance},{Application-Integrated} far
memory. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[13] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Mano-
lis Marazakis, and Angelos Bilas. Optimizing memory-mapped {I/O}
for fast storage devices. In 2020 USENIX Annual Technical Conference
(USENIX ATC).

[14] Anirudh Badam and Vivek S Pai. {SSDAlloc}: Hybrid {SSD/RAM}
memory management made easy. In 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2011.

[15] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagap-
pan, Rathijit Sen, Kwanghyun Park, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. The storage hierarchy is not a hierarchy:
Optimizing caching on modern storage devices with orthus. In 19th
USENIX Conference on File and Storage Technologies (FAST).

[16] S Kazama, S Gokita, S Kuwamura, E Yoshida, J Ogawa, and Y Honda.
Memory expansion technology using software-controlled ssd. In Proc.
Flash Memory Summit.

[17] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Disaggregating Per-
sistent Memory and Controlling Them Remotely: An Exploration of
Passive Disaggregated Key-Value Stores. 2020.

[18] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,
Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2b-ssd: The case for
dual, byte- and block-addressable solid-state drives. In Proceedings of
the 45th Annual International Symposium on Computer Architecture
(ISCA), 2018.

[19] Chander Chadha. NVMe SSD with Persistent Memory Region . shorturl.
at/hrPS3.

[20] Stephan Bates. Enabling Remote Access to Persitent Memory on an
I/O Subsystem using NVMe and RDMA. https://tinyurl.com/2jykndr6.

[21] Jaeho Kim, Donghee Lee, and Sam H Noh. Towards {SLO} complying
{SSDs} through {OPS} isolation. In 13th USENIX Conference on File
and Storage Technologies (FAST), 2015.

[22] Bryan S Kim, Jongmoo Choi, and Sang Lyul Min. Design tradeoffs
for {SSD} reliability. In 17th USENIX Conference on File and Storage
Technologies (FAST 19), 2019.

[23] Jie Zhang, Miryeong Kwon, Michael Swift, and Myoungsoo Jung.
Scalable parallel flash firmware for many-core architectures. In 18th
USENIX Conference on File and Storage Technologies (FAST), 2020.

[24] Myoungsoo Jung. {OpenExpress}: Fully hardware automated open
research framework for future fast {NVMe} devices. In 2020 USENIX
Annual Technical Conference (USENIX ATC), 2020.

[25] Jian Xu and Steven Swanson. {NOVA}: A log-structured file system
for hybrid {Volatile/Non-volatile} main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST), 2016.

[26] PCISIG. PCI Express 6.0 Specification. https://pcisig.com/pci-express-
6.0-specification.

[27] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor

processing unit. In Proceedings of the 44th annual international sym-
posium on computer architecture, 2017.

[28] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. Write once, get 50%
free: Saving {SSD} erase costs using {WOM} codes. In 13th USENIX
Conference on File and Storage Technologies (FAST).

[29] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai, Youngjae Kim,
Xiaosong Ma, Peter Desnoyers, and Yan Solihin. Active flash: Towards
{Energy-Efficient},{In-Situ} data analytics on {Extreme-Scale} ma-
chines. In 11th USENIX Conference on File and Storage Technologies
(FAST).

[30] Miryeong Kwon, Donghyun Gouk, Changrim Lee, Byounggeun Kim,
Jooyoung Hwang, and Myoungsoo Jung. {DC-Store}: Eliminating
noisy neighbor containers using deterministic {I/O} performance and
resource isolation. In 18th USENIX Conference on File and Storage
Technologies (FAST), 2020.

[31] Qiuping Wang, Jinhong Li, Wen Xia, Erik Kruus, Biplob Debnath,
and Patrick PC Lee. Austere flash caching with deduplication and
compression. In 2020 USENIX Annual Technical Conference (USENIX
ATC), 2020.

[32] Mohit Saxena, Yiying Zhang, Michael M Swift, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Getting real: Lessons in
transitioning research simulations into hardware systems. In 11th
USENIX Conference on File and Storage Technologies (FAST), 2013.

[33] Jie Zhang and Myoungsoo Jung. Flashabacus: a self-governing flash-
based accelerator for low-power systems. In Proceedings of the Thir-
teenth EuroSys Conference, 2018.

[34] Myoungsoo Jung. Exploring design challenges in getting solid state
drives closer to cpu. IEEE Transactions on Computers, 2014.

[35] NVM Express Work Group. NVMe Base Specification. https:
//nvmexpress.org/developers/nvme-specification/.

[36] Gyuyoung Park and Myoungsoo Jung. Automatic-ssd: full hardware
automation over new memory for high performance and energy efficient
pcie storage cards. In Proceedings of the 39th International Conference
on Computer-Aided Design, 2020.

[37] Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han,
Daehyun Kim, Chulseung Lee, Youra Choi, Shine Kim, Dongku Kang,
Geunyeong Yu, Jaehong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae
Park, Sangyeun Cho, Hwaseok Oh, Daniel D.G. Lee, Jin-Hyeok Choi,
and Jaeheon Jeong. A flash memory controller for 15us ultra-low-
latency ssd using high-speed 3d nand flash with 3us read time. In 2018
IEEE International Solid State Circuits Conference (ISSCC), 2018.

[38] E. Strohmaier and Hongzhang Shan. Apex-map: A global data access
benchmark to analyze hpc systems and parallel programming paradigms
(sc). In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, 2005.

[39] Piotr Balcer. Persistent Memory Development Kit. https://pmem.io/
pmdk/.

51

shorturl.at/hrPS3
shorturl.at/hrPS3
https://tinyurl.com/2jykndr6
https://pcisig.com/pci-express-6.0-specification
https://pcisig.com/pci-express-6.0-specification
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://pmem.io/pmdk/
https://pmem.io/pmdk/

	Abstract
	1 Introduction
	2 Why CXL for PCIe Storage
	3 Multi-Protocol and CXL Devices
	4 Integrating Storage into CXL
	5 Performance Projection
	6 Storage Disaggregation
	7 Extension for Storage Control
	8 Conclusion and Future Work
	References

