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ABSTRACT

This paper discusses the main benefits of ZNS and shows why
ZNS can be deprived of internal parallelism when downsizing
its zone writable capacity. To this end, we use two production
ZNS SSDs and quantitively analyze the performance degra-
dation caused by inter-zone interference. We then suggest a
simple mechanism to detect zone-to-zone relationships gen-
erating the interference and schedule I/O requests by being
aware of internal parallelism. Our evaluation results using
real production ZNS devices show that our mechanism can
improve the bandwidth and latency of Linux’s multi-queue
I/O scheduler by 1.98 x and 2.2 x, respectively.

1 INTRODUCTION

Zoned namespaces (ZNS) are an emerging storage interface,
which can match how data is written to the device-side back-
end flash while hiding the details of flash-specific manage-
ment [1]. Specifically, ZNS offers a concept of zones, each
being mapped to one or more flash physical blocks and ex-
posing their operational constraints to a host (e.g., sequential
writes in a block and erase-before-write). The main benefit of
ZNS is to make the underlying solid-state drives (SSDs) cost-
efficient. Since ZNS lets the host manage data over zones,
SSDs can be free from the management of many restraints and
get lighter. For example, ZNS SSDs do not require preserving
lots of overprovisioned flash blocks for garbage collections
[2] as the host is solely responsible for reclaiming zones
and making a decision on the physical data layout. In addi-
tion, all writes for a zone should be performed in sequential,
which makes block-to-block (B2B) mapping sufficient rather
than page-to-page (P2P) mapping. This can also make SSDs
cheaper by removing a large size of internal DRAMs used for
covering TB-scale backend flash’s address space.

However, there is no free lunch. When ZNS is applied,
the host should manage the P2P mapping on behalf of SSDs
and obey all the block-level constraints that flash exhibits
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in nature (sequential writes). In addition, it requires period-
ically resetting zones (i.e., block erases), which makes the
host-side storage software stack a bit more complicated. To
address these shortcomings, several studies propose advanced
schemes and try to amend the ZNS interface by integrating
new features. For example, [3] introduces an in-storage com-
paction mechanism, which can internally move data between
different zones, thereby reducing the zone reclaiming over-
head. On the other hand, a technical proposal [4] suggests a
zone random write area (ZRWA) that allows overwriting a
few data such that it can relax the host-side constraint in a
particular case, such as metadata updates.

These technical suggestions can advance ZNS, but there
is another important system parameter that we should NOT
forget, SSD’s internal parallelism. This paper mainly argues
why the conventional software stack and operating systems
need to take care of internal parallelism. Note that most SSDs
aggregate many flash chips by interconnecting them through
multiple flash I/O channels to overcome the wide performance
disparity between what the host system bus requires (a few
GBs) and what a low-level flash chip can support (several tens
to hundreds of MB). The underlying flash firmware and/or
controllers parallelize incoming I/O requests across the dif-
ferent channels and chips, satisfying the host’s performance
demands. While ZNS successfully abstracts the address space
of SSD’s backend and flash intrinsic characteristics using
ZNS, there is a lack of abstraction to manage such internal
parallelism at the host side. Specifically, we observe that if
the host accesses ZNS SSDs with ignorance of their hardware
layout, it degrades the bandwidth of the ZNS SSDs by 2.84 x,
on average, compared to an ideal case.

This paper reconsiders what the main benefits of ZNS
bring (Section 2) and discusses why ZNS can be deprived
of internal parallelism when downsizing its zone writable
capacity (Section 3). In particular, we use two production ZNS
SSDs and quantitively analyze the performance degradation
caused by inter-zone interference and the challenges therein.
We then suggest an interference profiler and zone-aware 1I/0
scheduler, which can recognize zone-to-zone relationships
generating such an interference and maximize the degree of
internal parallelism, respectively (Section 4). Lastly, we show
how much our simple suggestion can improve the device-level
performance by being aware of the interference. Specifically,
when we evaluate large-scale, data-intensive workloads on the
production ZNS SSD, our scheme can improve the bandwidth
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and latency of Linux’s multi-queue I/O scheduler by 1.98 x
and 2.2, on average, respectively.

2 RETHINKING ZONED NAMESPACES

2.1 What are the Benefits of ZNS?

Recently, several studies report that ZNS is expected to de-
liver better performance compared to conventional storage
interfaces because of its transparent design [2, 3, 5, 6]. For
example, [5, 7] claims that, since the host is in a much bet-
ter position to leverage application knowledge than the un-
derlying flash firmware, it can do better application-aware
data placement and perform near-optimal garbage collections
(GCs). This can take GCs off the critical path such that ZNS
is expected to increase performance predictability and reduce
read tail latency. This can be true, but we argue a different
side story of ZNS; we advocate ZNS from the cost-efficiency
angle. SSDs are a complicated system, not a passive device
like DRAM storage [8]. SSDs require page-to-page address
translation and maintain all the mapping information in their
device. This incurs higher monetary cost and scalability limi-
tations, which hinders datacenters and enterprise servers from
replacing HDDs with SSDs more aggressively. Note that the
flash firmware and internal DRAMs take half the cost of SSDs
or more than that [9, 10].

There have been many efforts to make SSDs cost-efficient.
For example, Open-Channel SSD (OCSSD [11]) is the in-
terface to expose the backend flash storage to the host via
logical block chunks directly. This characteristic is similar to
what ZNS wants to achieve, but there are two practical issues
rendering OCSSD difficult to be widely adopted in various
computing. First, the host side storage stack should manage
all reliability and data consistency issues, which can signifi-
cantly vary based on SSD vendors and their implementation.
Second, the SSD’s cost is not surprisingly reduced. This is be-
cause the hardware implementation for OCSSD still requires
complex computing logic to expose all the flash natures to the
host through a simple, thin block interface.

We believe ZNS is a much more practical interface (than
OCSSD) to make storage cost-efficient. As shown in Figure
la, ZNS defines a set of zones, each being directly mapped to
one or more physical flash blocks. In contrast to OCSSD, ZNS
allows the underlying SSDs to have flash firmware, but it can
be much lighter as the firmware only manages the mapping
and device-level errors across different zones, not pages. From
the host-side view, the address space of a ZNS SSD is exposed
by a set of zones, each containing its own logical addresses,
which can access just like conventional SSDs. However, as
zones are an abstract of flash blocks, each zone’s address
space should be written in sequential and requires a reset (i.e.,
erase) before storing data. The host thus takes over all the
heavy tasks of the existing flash firmware like GCs, caching,
and page-to-page address translation. This clear functional
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boundary between the host and SSD can reduce the monetary
cost paid for the large size of internal DRAMs and firmware.

2.2 Who Can Benefit from ZNS?

High-density flash. In addition to the cost efficiency men-
tioned above, ZNS can reduce the write amplification factor,
making the underlying storage much more reliable as the host
needs to perform writes in sequential and reclaim zones (i.e.,
GCs) explicitly. It is beneficial for storage vendors to build
datacenter/enterprise SSDs using highest-density flash tech-
nologies, such as a triple-level cell (TLC) and quad-level cell
(QLC). Since the highest-density flash can triple or quadruple
the storage capacity, it can make SSDs better than HDDs
in terms of the cost per performance. However, their low
endurance and shorter lifetime characteristics can ironically
increase the total cost of ownership (TCO) and challenge a
wide adoption of such SSDs in various data-intensive com-
puting. For example, QLC’s number of program per erase
(P/E) is 10x lower than MLC [12]. ZNS can address this
shortcoming as it allows the host to reclaim zones directly
aware of application knowledge and only permits sequential
writes at the device level. This property significantly improves
the flash block utilization without amplifying writes, thereby
reducing P/Es and making the high-density flash practical
in many data-intensive computing domains. Note that, even
though writes should be performed in sequential, there is
no constraint on read services; arbitrary addresses in a zone
can be read. Many read-intensive applications can enjoy the
low-cost, high-performance capabilities that ZNS support.
Reads are all that matter. A specific use case scenario which
takes advantage of ZNS SSDs is large-scale recommenda-
tion systems [13, 14], distributed key-value store (KVS) for
AI/ML services [15], and social graph data management in
datacenters [16]. For example, the recommendation systems
of Facebook and Baidu keep user’s TB~PB-scale embedding
tables into enterprise SSDs (rather than HDDs) and read fea-
ture vectors of the embedding tables in a random manner [15].
Facebook also maintains social graph data in MySQL tables,
and all the corresponding table rows are stored and serviced
from KVS (RocksDB). Note that the recommendation system
and RocksDB scenarios sporadically update large-scale user
data (e.g., profiles and graphs) in a mostly sequential manner
while intensively reading the data for training and inference
of several AI/ML services or graph analysis. We believe that
their high demands of massive storage capacity and excel-
lent read performance make ZNS and the high-density flash
technologies promising in such datacenter scenarios.
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Figure 2: Different block size.
2.3 How Should Zones be Configured?

Thanks to ZNS’s zone abstraction, the host does not have
a restriction on read accesses and can enjoy the true read
performance that the low-level flash devices expose. While
the write performance may not be as crucial as reads in the
aforementioned scenarios, the quality of read services (in-
cluding the tail latency) can severely degrade due to periodic
zone reclaiming on a write. ZNS SSDs translate a zone to
many flash blocks spanning across 16~128 flash chips, which
exhibits a few GB writable capacity per zone. This large zone
configuration is typical [2], and it can erase multiple blocks
in parallel, thereby exhibiting high performance. However, it
can unfortunately make the latency of zone reclaiming longer,
which blocks following read services for a while. Since a large
zone can contain many valid pages existing across different
flash blocks, it obviously exhibits a longer time to keep the
valid data in a safe space (e.g., page migration) before reset-
ting the target zone. To address this, it is recently discussed
to introduce a smaller writable capacity to a zone [3, 17].

In this paper, we also advocate configuring the zones as
small as possible, called small zone. It is apparent from zone
downsizing that we can address the long latency issue of zone
reclaiming, but to be precise, we evaluate two production
ZNS SSDs, each configuring the address space as a large
zone (2.18GB) and small zone (96MB). Figure 1b analyzes
the read latency of those two ZNS SSDs postponed by zone
reclaiming. In this evaluation, we vary the ratio of valid pages
per zone from 10% to 90% for both large and small zones.
The specific system parameters and configurations for our
ZNS evaluations will be explained in Section 5. As the ratio
of valid pages increases, the read latency (blocked by zone
reclaiming) of both ZNS SSDs increases. Nevertheless, the
read latency of the ZNS SSD configured by small zones is
shorter than that of large zones by 10.6x, on average. Note
that, considering a read of the ZNS SSDs takes 480 us, we
believe that longer than a ten seconds delay with large zones is
not acceptable in many read-intensive computing scenarios.

3 ABSTRACTION GRAY AREA

While ZNS is an excellent interface to draw the clear bound-
ary between the host and flash firmware through zones/blocks,
there is a lack of hardware abstraction to exploit SSD’s inter-
nal parallelism explicitly from the host. In this section, we
first examine what the host should consider using the small
zone ZNS, and then, analyze the performance degradation
coming from the lack of ZNS’s hardware abstraction.
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Figure 4: Example of profiling.

Figure 3: Different # of processes.

3.1 Parallelism Loss and Challenges

There are several studies to urge ZNS to support the small
zone [2, 3], but its real implementation can lose the paral-
lelism that large zones bring, thereby degrading performance
seriously. Figure 2 compares sequential and random read
bandwidth of the two production ZNS SSDs that we tested.
These two SSDs, called ZNS-small and ZNS-large, use the
same version of flash firmware controller and the same tech-
nology of backend storage (less than 32TB, TLC-based high-
density flash). Each flash die of the backend storage contains
four planes, operating altogether in parallel. The only differ-
ence is the ZNS configuration. ZNS-large configures 2.18GB
for each zone and supports 12 open zones (allowing 12 current
writes), while ZNS-small uses 96MB with 4096 open zones.
All the ZNS SSDs are connected to a host with a 2.3GHz
Intel Xeon 20 core CPU (offering 40 vCPUs) through PCle
3.0x4 (3.94GB/s max). The access patterns are generated by
FIO [18] and ZoneFS [19].

Performance degradation. One can be observed from the
figure that the bandwidth of ZNS-large gets better as the re-
quest size of reads increases. When we increase the block size
by 16MB, it reaches the maximum bandwidth of PCle and
gets saturated. The reason why it exhibits better performance
with a longer request length is SSD’s internal parallelism
[20-25]. Since a large request can be split into multiple sub-
requests, it can be striped across different internal resources
(associated with one or more zones) of ZNS-large and served
in parallel (e.g., flash channel and chips). Other conventional
types of SSDs also observe this phenomenon since the under-
lying firmware controls all the internal parallelism in cases
where the request size is sufficient to span over all the internal
resources.

While it is vital to secure a high degree of internal paral-
lelism for better performance, ZNS-small cannot. As shown
in the figure, ZNS-small’s bandwidth is limited by 460 MB/s
even with the large requests and 7.85 x worse than ZNS-large.
This is because, when it configures the zone writable capacity
as 96MB, the zone loses all the parallelism therein. Specifi-
cally, the size of a ZNS-small’s physical flash block for each
plane is 24MB, and thus, a zone (96MB) is solely accommo-
dated by a single flash chip. This makes all pages of a zone
located in a flash chip, which in turn can make the request
unable to be striped across different chips.

Note that, as shown in Figures 2a and 2b, both ZNS-large
and ZNS-small show the similar performance trend between
sequential and random reads. The reason why there are some
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production SSDs exhibiting better performance on sequential
is to prefetch requests using their internal DRAMs. Unlike
these SSDs, ZNS SSDs are designed towards minimizing
their internal hardware resources. Thus, it does not apply the
prefetch, which makes the read performance trend entirely
depend on low-level flash latency and their parallelism. For
example, the production ZNS SSDs, only employ internal
DRAMSs accounting for 0.05~0.1% of the storage capacity,
which is 10~20x smaller than the conventional SSD’s inter-
nal DRAMs.

Parallelism improvement limits. One of the ways for ZNS-
small to catch up with the performance of ZNS-large is in-
creasing the number of application processes at the host side.
Specifically, the host can allocate different zones across the
processes, making each process simultaneously operate on its
dedicated zone. Even though it gives more burdens to the host
to manage multi-tenant environment (e.g., process and zone
management), the host can activate many zones in an attempt
to improve ZNS-small’s internal parallelism. However, since
the host does not have specific information on the underlying
SSD’s hardware, it can allocate zones interfering each other
(because of flash channel/die sharing) to different processes
thereby limiting the degree of the internal parallelism. For
example, if different requests associated with two different
zones should be served from one or two resources in a chan-
nel, their performance can significantly degrade because of
flash-level conflicts and channel contention [20-25].

Figure 3a shows the read performance comparison between
ZNS-large and ZNS-small operating with many application
processes. One can be observed from the figure that ZNS-
small’s performance significantly varies based on the level of
inter-zone interference; we classify the interference level (/L)
ranging from O to 7 according to their different bandwidth
behaviors. Note that, we only show the result of random reads
in this evaluation since our production ZNS SSDs exhibit
the same performance trend for both reads and writes. As
shown in the figure, ZNS-small with IL 7 exhibits 809 MB/s,
on average, while ZNS-small’s bandwidth with 32 processes
reaches the maximum bandwidth (3.94 GB/s) that its PCle
interface delivers if there is no interference (IL 0). As reducing
the interference level, ZNS-small is expected to improve the
degree of SSD’s internal parallelism thereby increasing the
bandwidth significantly.

Figure 3b summarizes the performance improvement of
ZNS-small based on varying levels of the interference. ZNS-
small with ILO is 2.84 x better than that with IL 7. Even in
cases where one can reduce the interference level at some
extents, not completely, the performance gain is significant.
For example, if the host can allocate zones to different pro-
cesses wisely by managing the interference level from 7 to
4, it improves ZNS-small’s bandwidth by 1.33GB/s, on av-
erage. However, the host cannot unfortunately control the
interference level as there is no interface abstraction in ZNS,
exposing the internal hardware configuration to the host.
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4 EXPLOITING PARALLELISM

The aforementioned shows that, if one can add simple fea-
tures to figure out the interference level or hardware layout
into ZNS, the host can control ZNS-small without losing
parallelism while significantly reducing the zone reclaiming
latency (cf. Section 2.3). While revising the interface would
be the best to remove the inter-zone interference, in this paper,
we show a simple, effective method that improves ZNS SSDs’
bandwidth by exploiting the internal parallelism. This method
consists of an interference profiler and a zone-aware sched-
uler. Our profiler detects per-zone performance degradation
and classifies zones into multiple conflict groups (CGs), each
containing the zones interfering with each other. Then, the
zone-aware scheduler does issue I/O requests of multiple CGs
in an evenly distributed manner.

4.1 Inter-Zone Interference Detection

Figure 4 shows how we can detect and profile the interference
among the standard ZNS’s zones. In this example, we show a
set of baseline zones (0~7) to compare in the y-axis, while
the x-axis shows different zone indices that we evaluate in
parallel with the corresponding baseline zone. For brevity,
the figure configures the baseline zones by selecting the zone
having completely no interference with each other. One can
observe from this figure that each comparison item exhibits
identically different performance values; 600MB/s (blue) vs.
900MB/s (red). The blue item means there is interference
between the baseline line and target zones. For example, the
zones 9, 16, and 25 exhibit the interference with the zone O
(e.g., the bottom row of the figure). Note that the zone 9 is
not interfered by the zones 1~7, but only interfered by the
zone 0. Thus, we can collect all the zones highlighted by blue
for each row and call them a CG.

Even though the high-level concept for profiling CGs is
straightforward and simple, its actual method is practically a
bit more complicated. This is because, as there is no informa-
tion regarding the zone-level hardware information at all, the
host also has no knowledge about the baseline zones. In addi-
tion, the baseline zones to compose their CGs can vary based
on how the host initially assigns running processes to the
different zones. For example, Figure 5 illustrates all the CGs
made for the entire zone space of our ZNS-small. In cases
where there are 16 co-running processes, Figure 5a assigns
the zones to each process in a sequential manner, whereas
Figure 5b allocates the zones in a wrap around manner (e.g.,
a process has zones 0, 16, 32, ..., 2047). The actual baseline
zones of Figure 5a and Figure 5b are {0, 1, 2, 3,4, 5, 6, 7}
and {0, 1, 4, 5, 8, 9, 12, 13}, respectively. Because of the
dynamics, we need to compare all zones appropriately. Al-
gorithm 1 explains how to classify zones into different CGs.
At the very beginning, the algorithm initializes the baseline
zone of CGO with the zone O (line 1). It also requires setting
a performance threshold to determine whether the visiting
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Algorithm 1: Interference detection. Conflict groups

Input: N := Number of zones

DOEEEER [OHEREEEE

Output: CG := an array of conflic groups

1 CGI0][0] = zoney // S}ét a initgbasgline zone Repeated
127

2 fork<—1toN—1do// For all zones 125

3 Lhw.append(bandwidth(zonek, CG[0][0])) 15

4 threshold = average(bw.max, bw.min) 13

5 fork<-1toN—1do// For all zones 11

6 |newCG =1 X

7 |for [+~ 0to len(CG)-1 do // For all CGs S

8 | |if bandwidth(zoney, CG[1][0]) < threshold <

9 newCG =0 %

10 CG]l].append(zoney) <

u break 2 —omo~o-mw

12 |if newCG o DA

13 | |CG.append([]) // Add new CG N Zone Index[3:0]

14 JCG[Ien(CG)][O]:zonek // Set new baseline zone (a) SSD-A (case 1)‘

zones interfere with a baseline zone or not. The threshold can
be simply achieved by calculating the average mean of two
zones each exhibiting high and low performance (lines 2 ~
4). Tt then visits all zones (line 5) and evaluates whether each
zone is associated with CG’s baseline zone or not (line 8).
During the evaluation, the host can issue a few requests for
both the visiting zone (i.e., zoney) and CG’s baseline zone
(i.e., CGI1][0]) in parallel. If the zone’s bandwidth is lower
than the threshold, it adds this zone into the target CG (CG[l]).
Otherwise, it creates a new CG and sets the baseline zone
with the visiting zone (line 12 ~ 14). Once we visit all zones,
this algorithm turns out a zone-to-CG (Z2C) mapping table,
which can be used for a runtime I/O scheduler.

4.2 Interference-aware I/0O Scheduling

The main goal of the interference-aware scheduler is to sched-
ule I/O requests coming from different CGs, not the same
CG as many as possible. Figure 6 shows an example of the
runtime I/O scheduler that increases SSD’s internal paral-
lelism using the Z2C mapping table. Since block I/O requests
(bios) have no information regarding zones, the block layer
(e.g., blk_mq) checks the logical block address (LBA) of an
incoming bio to figure out which zone owns it. Based on the
retrieved zone index, the block layer can find the correspond-
ing CG by referring to the Z2C mapping table and tags the
CG index to the target bio. After this CG tagging (@), the
scheduler checks how many requests have been issued for
each CG and gives the highest priority for the CG having
lower numbers of outstanding requests to be scheduled (@).
This can help to fairly schedule the I/O requests across differ-
ent CGs by considering their load balance while exploiting
the internal parallelism. Obviously, the block layer needs to
keep the number of outstanding requests per CG (@), which
will be referred in its interference-aware scheduling.

S SCHEDULING IMPACT

In this section, we focus on evaluating the performance im-
pact on realistic workloads that may have benefit from ZNS.
Specifically, we setup the evaluation environment by mimick-
ing two enterprise-scale application scenarios, RocksDB and

Figure 5: Result of Zone-to-CG.
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Figure 6: Interference-aware scheduler.

recommendation systems. Using the testbed with ZNS-small
(cf. Section 3.1), we co-run 1~32 processes, each having
200~256 zones. RocksDB allocates each SST file (sorted
string table) to varying numbers of zones, ranging from 1
to 16. For the recommendation system, 128 zones are allo-
cated to manage an embedding table containing 50 million
indices with 64 dimension (12GB) [26]. We prepare two
schedulers, a multi-queue block IO queueing (blk_mq) and a
zone interference-aware multi-queue (zns_mq) that uses our
interference profiling information.

5.1 Bandwidth Impact

Figure 7 compares the performance of blk_mq and zns_mq
for RocksDB. Since the typical size of each SST file is sev-
eral tens to hundreds MB, RocksDB has an excellent posi-
tion for multiple applications to exploit small zones. As the
number of application processes increases, the bandwidth for
both blk_mqg and zns_mqg increases. However, one can ob-
serve from this figure that blk_mq degrades the bandwidth as
increasing the size of SST files (16%, on average). This is be-
cause each process has zones sitting on a contiguous address
space, which increases the number of zones being classified
by the same CG. When all co-running processes access such
zones, the service is delayed because of their inter-zone in-
terference. In contrast, zns_mq has no performance drop and
shows very sustainable performance irrespective of the num-
ber of zones allocated for each SST file. Even though there
are many zones associated with the same CG, zns_mq sched-
ules I/O requests of multiple processes being aware of their
inter-zone interference and distributes the requests across all
the conflict groups in the balanced manner. Thus, zns_mq can
improve the bandwidth of b1k_mq as high as 55%.

As shown in Figure 7b, this performance trend becomes
more identical when we run multiple training tasks on large-
size embedding tables. The bandwidth of blk_mq is limited
and saturates at 878MB/s even though we increase the num-
ber of processes training the embeddings in parallel. This is
because the host does not have any knowledge of SSD’s inter-
nal parallelism, and blk_mq serves incoming bios in the first
come, first served manner. Thus, while there are 40 per-core
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Figure 7: Bandwidth analysis.

queues, bios heading to the same target CG suffer from a low
degree of internal parallelism. As shown in the figure, zns_mq
performance trend for this recommendation system is similar
to what we observed from RocksDB, which makes zns_mq
better than blk_mq by 2.76 <, on average.

5.2 Latency Impact

Figure 8a shows cumulative distribution function (CDF) of
RocksDB latency when we co-run 32 processes, and allocate
1, 8, and 16 zones for each SST file. zns_mq achieves narrow
width of distribution, while blk_mq experiences wider distri-
bution in the tails. This is because there are huge interference
level differences between I/O requests in blk_mq, whereas
zns_mq can guarantee all I/O requests experiencing similar
interference levels at any time by considering conflict groups
of the outstanding I/O requests. Specifically, when we allocate
16 zones for each SST file, b1k_mq exhibits 5.7% shorter aver-
age latency than zns_ma, but its three nine (99.9" percentile)
long-tail latency is worse than zns_mqg by 8.65x. Note that,
the number of inter-zone interferences for blk_mq increases
as the number of SST files for each zone increases. However,
the impact of interference appears to become saturated from
the eight zones (cf. Figure 7a).

As shown in Figure 8b, recommendation system introduces
similar inter-zone interference impacts as RocksDB. Specif-
ically, zns_mq can mitigate three nine long-tail latency as
much as 92% for the recommendation system, which is the
same amount as the RocksDB. However, unlike RocksDB,
zns_mq for the recommendation system can reduce not only
long-tail latency but also average latency by 70% due to the
high interference level (e.g., IL 7) when we allocate 128 zones
for each embedding.

6 RELATED WORK AND DISCUSSION

Related work. [2] argues that ZNS is better than the conven-
tional block interfaces since it can reduce all the overhead
imposed by the host-side and device-side storage stack. It
shows how RocksDB can take advantage of ZNS. [3] moves
further and improves a ZNS-enabled system’s performance by
utilizing flash-level data copy operations. These studies advo-
cate that a small zone configuration is better than a large zone
configuration as large zones can reduce the degree of freedom
for host-level data placement. However, these studies did not
consider SSD’s internal parallelism that should be taken into
account. [27] improves garbage collection overhead being
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Figure 8: Tail latency analysis (32 processes).

aware of SSD’s internal parallelism, but it is related to ZNS
using large zones. In contrast, this work focuses on analyzing
challenges of ZNS using small zones and studies a simple, but
efficient scheduling mechanism to improve the parallelism
being aware of inter-zone interference.

Limits and future work. The proposed host-side profiler can
detect the interference inherited from the underlying hard-
ware sources and classify zones based on their zone-to-zone
relationships. However, the inter-zone interference and zone-
to-zone relationships can vary based on how we allocate zones
to different processes. Thus, the proposed software-based pro-
filing may bring undesirable overhead when there is a change
for the zone allocations. The current prototype exhibits a few
milliseconds to replace the existing interference information
with new one (if there are many zone allocation changes).
We believe that revising ZNS interface itself to expose the
interference information for each zone is better for the host to
take SSD’s internal parallelism. As an alternative option, we
can interleave interference profiling with process scheduling
and/or namespace allocations or schedule it in idle. As our
technique to exploit the parallelism is simple to implement,
we believe that it can be easily integrated into existing and
future ZNS studies [2-5, 17, 27].

7 CONCLUSION

We use two production ZNS SSDs and quantitively analyze
the performance degradation caused by inter-zone interfer-
ence. In this paper, we also suggest a simple mechanism to
detect zone-to-zone relationships and schedule I/O requests
by being aware of internal parallelism. Our evaluation results
show that our mechanism can improve the bandwidth and
latency of Linux’s multi-queue I/O scheduler by 1.98x and
2.2x, on average, respectively.
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