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ABSTRACT
We present FF-SSD, a machine learning-based SSD aging
framework that generates representative future wear-out
states. FF-SSD is accurate (up to 99% similarity), efficient
(accelerates simulation time by 2×), and modular (can be
integrated with existing simulators and emulators).

CCS CONCEPTS
• Computing methodologies → Simulation tools; Su-
pervised learning by regression; • Information systems→
Flash memory.
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1 INTRODUCTION
Understanding the aged behavior of SSDs (solid-state drives)
is important because the errors in SSDs increase over time as
flash memory wears out [3, 16]. Errors not only corrupt the
data the SSD stores (silent data corruption) [2, 6], but also
induce fail-slow symptoms where performance degrades as
the SSD attempts to correct and prevent these errors [8, 11].

However, no existing SSD development frameworks (such
as Amber [7], FEMU [14], and MQSim [22]) consider aging in
their design. Aging through pre-conditioning is prohibitively
expensive as it takes years’ worth of simulation time to reach
that aged state. Alternatively, the initial erase count can be
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pre-set to a higher non-zero value, but this will be an unre-
alistic wear state because modern SSDs cannot effectively
even the wear with its wear leveler [15].
In this work, we propose Fast-Forwardable SSD (FF-SSD),

a machine learning-based SSD aging framework that gener-
ates representative future wear-out states. Within a typical
SSD model, many components perform repetitive work. For
example, the garbage collector may keep selecting several
hot blocks as the victim over a period of time. Similarly, the
trigger condition of the wear leveler is computed regularly
during the lifetime of the SSD. Thus, the behavior within
an SSD can be learned from past executions to predict the
future SSD-internal state.
However, the challenges of using a machine learning ap-

proach for making online, fine-grained inferences on SSD
internal states are two-fold. First, the inference must be accu-
rate. Modern SSDs are complex embedded systems, manag-
ing all of their internal resources with background operations
such as garbage collection, wear leveling, error handling,
and data scrubbing. These internal complexities need to be
learned to make the inference highly accurate. Second, the
inference must be fast and efficient relative to the simula-
tion time; otherwise, it either brings negligible benefits or
even prolongs the overall process. Deep learning models
like convolutional neural network or recurrent neural net-
work would introduce more complexities and may result
in a slow training and inference performance. To address
these, FF-SSD incrementally builds a lightweight regression
model for each block to capture the changes in SSD-internal
states and predicts their trajectory using the information
from past executions. This model would approximate the
future wear state of an SSD device if the same workload were
to be repeated, resulting in a faster simulation time.
We present the design, implementation, and usage sce-

narios of the FF-SSD framework1. We build FF-SSD with
the following quality attributes: (1) accuracy by generating
realistic distributions that match up to 99% of the full sim-
ulation results, (2) efficiency by accelerating the simulation
by 2× to reach a desired aged state, and (3) modularity by
building the prediction module that can be integrated across
multiple platforms. We evaluate our design using real-world
workloads [10, 12, 24] across multiple platforms [5, 7, 14] to
demonstrate the usefulness of FF-SSD for SSD aging.

1FF-SSD is available at https://github.com/ZiyangJiao/FF-SSD.
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2 MOTIVATION AND RELATEDWORKS
We begin by asking a basic question: does the wear state
really matter in SSDs? We then describe the irregularity of
the SSD’s wear, and briefly discuss related works.

(a) The relationship between
RBER and erase count.

(b) The irregularity of block
erase count.

Figure 1: Figure 1a shows the error rate as the erase
count increases for three flashmemory chips. Figure 1b
shows the erase behavior under three real-work work-
loads [10] with a 256GB SSD. The end of the line indi-
cates the failure of that device.

Fail-slow symptoms. Previous works [8, 11] have shown
the fail-slow symptoms manifest in SSDs as they correct
and prevent errors whose rate naturally increases due to
wear. Figure 1a shows the relationship between raw bit error
rate (RBER) and erase count for three flash memory chips
derived from RBER models [11]. As an SSD ages and wears
out, the error rate increases, which in turn, degrades the
performance [11].
Irregularity of block erase count. An SSD consists of hun-
dreds of thousands of flash blocks and they have different
erase count trajectories during the lifetime of the device. Fig-
ure 1b shows the changes in erase count for the hottest and
coldest block under three real-work workloads [10] (WBS,
DAP-DS, and LM-TBE), for a 256GiB SSD. As shown in the
figure, blocks behave distinctly across three workloads, and
the erase counts change at different rates through SSD’s
lifetime, demonstrating the irregularity of erasure behavior
within the SSD. Even though a wear leveler is used [4], the
SSD cannot implement perfect wear leveling, similar to the
observation from a field study on millions of SSDs [15].
File system aging. Although there are existing research
and tools for file system aging [1, 9, 20], these cannot be
directly applied to SSD aging. File system aging tools gen-
erate a fragmented state of logical block layouts, but SSD
aging needs to model the physical aging of blocks as the re-
liability properties of a young and an old block are different.
Preconditioning an SSD is more akin to file system aging
by populating and invalidating the address space [21], and
cannot sufficiently age the device to an end-of-life state.
Machine learning for simulation.Wefind two priorworks
that use machine learning to accelerate simulations: DEVS

(Discrete EVent Specification) [19] and CML (Continuous
Machine Learning) [18]. At a high-level, DEVS considers
multiple model candidates and selects the best one for pre-
diction. This model, however, is not always updated before
each prediction stage. On the other hand, CML continuously
incorporates the latest data to update its model. However,
both are not designed for SSD aging and ignore the complex-
ity of modern SSDs. CML focuses on performance estima-
tion rather than generating internal states, and DEVS is for
discrete-event modeling and simulation that assumes that in
between events (i.e., external I/O requests), the state of the
system does not change [23].

3 SYSTEM DESIGN
We first describe the overall process of learning the wear-out
behavior of the SSD to predict the future state, and discuss
further optimizations to improve the efficiency of our tool.

3.1 Overall Architecture
Our generative process consists of five phases: (1-2) simu-
lation and observation, (3) training, (4) prediction, and (5)
projection, as shown in Figure 2.
Simulation and observation. FF-SSD starts from actual
simulation during a workload sample to observe the SSD’s
internal activities, and collect information that will later be
used for the prediction. To infer the future erase count of
each block, the following features will be recorded at the
end of every observation period: (1) the block identifiers,
(2) the current erase count, (3) the observation time, and (4)
the write amplification factor during this observation period.
We filter out features that may seemingly look important
but in reality, are not for the prediction. These excluded
features relate to the workload characteristics observed from
the host side such as workload hotness, access footprint, and
I/O size, as their effect on erase count heavily depends on
the implementation of the flash translation layer (FTL). The
selected features are logged throughout the simulation.
Training. Once enough workload has been sampled, we use
the gathered data to build a lightweight regression model
for each block and predict the future state. Specifically, the
system will extract and normalize the time-series data from
the observation and train the model for each block. The main
challenge here is to decide how much history should be used
for the training process. Since changes in wear for each block
are dynamic during the SSD’s lifetime, most recent activities
are more relevant to the future states. We thus filter out stale
information and use only the latest history. These models
are updated before each prediction, so they can learn the
most recent trend within the SSD.
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Figure 2: FF-SSD overview. FF-SSD starts from actual (1) simulation to (2) observe the SSD’s internal activities, then
(3) train lightweight regression models to (4) predict the trajectory for the block’s wear out, and (5) project SSD
states based on the prediction results.

Prediction. The training phase generates the weights in the
models that will be temporarily kept in FF-SSD. For each
block, the model is then activated to infer its future erase
count based on the acceleration factor (𝐴𝐹 ), dictated by the
user. In this work, we define 𝐴𝐹 as the ratio of full work-
loads to the simulated workloads. Thus, there is an inherent
tradeoff between prediction accuracy and acceleration effi-
ciency. An aggressive acceleration saves more time to reach
an aged state, but at the cost of decreased accuracy compared
to moderate acceleration.
Projection. Finally, these generated future states are fed
back into the simulation, where it will continue to sample and
run workloads. The relevant components are also updated
within the platform based on the new state. These stages will
repeat until the SSD reaches its desired age.

3.2 Enhancing Efficiency
Since we approach by incrementally building multiple light-
weight regression models for all blocks, the prediction over-
head is proportional to the number of blocks. Thus, reducing
the number of blocks to model and infer would improve the
efficiency. We next present an analytic approach to further
improve inference efficiency based on distribution modeling.

We assume that the wear distribution of blocks adheres to
an underlying measurable distribution 𝜌 (·), such as normal
distribution. We then divide all blocks into several groups
based on wear conditions (e.g., quantiles) and build one
model for each group. Then we estimate the future wear
for each block according to the prediction result of these
groups and the density function that models the overall un-
derlying distribution.

In this work, we observed that the discrete wear distribu-
tion can be almost perfectly matched by a skew-normal distri-
bution in most cases, with skewness 𝛼 , location 𝜇, and scale
parameter 𝜎 . Figure 3 shows the histogram of erase counts
under WBS workloads, overlaid with the approximating
skew-normal distribution with 𝛼 = 0.75, 𝜇 = 310, 𝜎 = 15.1.

Figure 3: Skew norm fit to the measured distribution.
The red line indicates the approximating skew-normal
distribution, matching with the observed distribution.

Since no statistical method can affirm whether two distribu-
tions are the same, we run Kolmogorov–Smirnov goodness-
of-fit test to check if the observed distribution fits our sta-
tistical model. We fail to reject the null hypothesis that the
wear distribution matches the skew-normal distribution on
105 samples with 𝑝 > 0.1.

4 EVALUATION
In this section, we first evaluate the effectiveness of FF-SSD
for SSD aging, then explore the optimal point along the
tradeoff between accuracy and efficiency. Table 1 outlines
the system configurations for our evaluation (FTLSim [5],
Amber [7], and FEMU [14]).

For the workload, YCSB-A is from running YCSB [24],
VDI is from a virtual desktop infrastructure [13], and the
remaining workloads are from Microsoft production servers
andMicrosoft enterprise servers [10]. The traces aremodified
to fit the logical capacity of the SSD, and all the requests are
aligned to 4KiB boundaries. We use a fully simulated result
(𝐴𝐹 = 1) as the baseline and compare our work against two
prior works, DEVS [19] and CML [18].

4.1 Effectiveness of FF-SSD
4.1.1 FTLSim. We first examine the effectiveness of FF-SSD
on FTLSim. We configure a 256GiB SSD and set the accel-
eration factor (𝐴𝐹 ) to be 1.5. We set the endurance limit to
500 for each block and run until the number of bad blocks
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(a) DTRS (b) WBS (c) YCSB-A (d) VDI
Figure 4: SSD aging until failure on FTLSim. FF-SSD achieves the highest accuracy (91% - 97%) compared to DEVS
(60% - 93%) and CML (48% - 84%). The accuracy is computed using the mean difference in erase counts across all
blocks relative to their real values from the full simulation.

(a) DTRS (b) WBS (c) DAP-DS (d) RAD-AS
Figure 5: SSD aging with 600 iterations of the workloads on Amber. The accuracy achieved by FF-SSD (88% - 99%)
outperforms DEVS (83% - 99%) by a small margin but by a large margin for CML (40% - 60%).

Table 1: Platform specific configurations.

FTLSim

Page per block 256 Physical capacity 284GiB
Page size 4KiB Logical capacity 256GiB
Endurance limit 500 Over-provisioning 0.11
Wear leveling PWL [4] Garbage collection Greedy

Amber

Channels 8 Page size 4KiB
Packages per channel 4 Physical capacity 284GiB
Die per package 2 Logical capacity 256GiB
Plane per die 2 Over-provisioning 0.11
Block per plane 1136 Garbage collection Greedy
Pages per block 512 Wear leveling Var-based

FEMU

Channels 8 Page size 4KiB
Luns per channel 8 Physical capacity 16GiB
Planes per lun 1 Logical capacity 15GiB
Blocks per plane 256 Over-provisioning 0.07
Pages per block 256 Garbage collection Greedy

exceeds its over-provisioning. In this work, the accuracy is
computed using the mean difference in erase counts across
all blocks relative to their real values from the full simula-
tion. Figure 4 shows our experiment results: with 𝐴𝐹 = 1.5,
FF-SSD continuously learns the behavior within the SSD
using the information from the past two iterations of the

workload, and then predicts the wear state after one addi-
tional iteration. FF-SSD generates the final states of SSD, and
achieves the highest accuracy compared to DEVS and CML.
For FF-SSD, we observe that the average accuracy is 94%

across all workloads, and as high as 97% for VDI. On the other
hand, the overall accuracy for DEVS and CML ranges from
60%-93% and 48%-83%, respectively. The lowest accuracy for
FF-SSD is 91% under YCSB workloads, while DEVS and CML
only achieve 60% and 48%, underperforming our design by a
largemargin. Essentially, we accelerate the simulation by 50%
with this workload sampling configuration and the predicted
distribution closely follows the fully simulated result.

4.1.2 Amber. We next study the performance of FF-SSD
on Amber and apply a more aggressive acceleration factor.
Specifically, we generate the wear distributions by applying
600 iterations of the workloads with 𝐴𝐹 = 2 and compare
them with the baseline. However, the endurance limit is set
to be sufficiently large at 100,000, the default value of Amber.
Figure 5 shows the experiment results on Amber. We ob-

serve that FF-SSD outperforms DEVS and CML for all the
workloads we evaluated. The accuracy ranges from 88% (for
WBS) to 99% (for DAP-PS), with a mean of 93%. On the other
hand, the accuracy achieved by CML only ranges from 40%
(for RAD-AS) to 60% (for WBS), with a mean accuracy of
49%. DEVS presents different behavior on Amber compared
to its results on FTLSim. DEVS delivers a similar accuracy
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(a) DTRS (b) WBS
Figure 6: Performance comparison of FF-SSD and DEVS
on FTLSim without WL. DEVS presents a similar per-
formance to FF-SSD.

(a) TPCC (b) TPCE
Figure 7: SSD aging with 50 iterations of the workloads
on FEMU. FF-SSD delivers a higher accuracy (93% for
TPCC and 91% for TPCE) than DEVS (79% for TPCC
and 60% for TPCE) and CML (18% for TPCC and 11%
for TPCE).

with FF-SSD on Amber, ranging from 83% (for DTRS) to 99%
(for DAP-PS), with a mean accuracy of 91%.

To further investigate why DEVS performs well on Amber
while not on FTLSim, we find that apart from the implemen-
tation details of FTLSim and Amber, these two platforms
deployed different wear leveling policies. PWL [4] is used
in FTLSim, which adopts an adaptive threshold-driven ap-
proach for selecting victim blocks for erases; on the other
hand, Amber applies a predefined threshold for the uneven
factor to determine the trigger condition. We run another
experiment to study how the wear leveling policy affects the
inference accuracy. Figure 6 shows the result on FTLSim after
applying 600 iterations of DTRS andWBSworkloads without
wear leveling. Without wear leveling in FTLSim, DEVS per-
forms similarly to FF-SSD, indicating that the performance
of DEVS is sensitive to the FTL algorithm.

4.1.3 FEMU. The previous experiments show the perfor-
mance of FF-SSD on SSD simulators. To further improve
usability, we turn to study the effectiveness of FF-SSD on
FEMU, a state-of-the-art SSD emulator. We use FEMU to em-
ulate a 16GiB SSD and generate the wear distribution after
50 iterations of two Microsoft enterprise server workloads,
ME-TPCC and ME-TPCE [10]. The acceleration factor is set
to be 2, and all I/O requests are issued by btreplay to the
underlying SSD.

(a) LM-TBE (b) RAD-BEFS
Figure 8: The tradeoff between aging accuracy and effi-
ciency. FF-SSD generates an accurate estimation when
at least half of the workloads are observed (𝐴𝐹 ≤ 2)
and occur more errors beyond that point.

Figure 7 shows the experiment results on FEMU. FF-SSD
achieves the highest accuracy (93% for TPCC and 91% for
TPCE) compared to DEVS (79% for TPCC and 60% for TPCE)
and CML (18% for TPCC and 11% for TPCE). Moreover, the
wear states generated by FF-SSD align with the overall shape
of our baselines, while DEVS and CML present apparent
discrepancies. Comparing this to the previous results, we
find that CML underperforms other methods when applied
to SSD aging and DEVS only works well under a particular
configuration. On the other hand, FF-SSD generates a more
realistic distribution on all the platforms while accelerating
the emulation by 2×.

4.2 Accuracy and Efficiency Tradeoff
In this section, we quantitatively analyze how different accel-
eration factors affect the overall accuracy and then provide
a conservative 𝐴𝐹 to balance this tradeoff.

We apply four different acceleration factors (1.5, 2, 3, and
4) to FF-SSD and generate the wear states of running 100
iterations of LM-TBE and MSN-BEFS workloads on FTLSim.
The performance comparison is shown in Figure 8. Overall,
the accuracy is similar for 𝐴𝐹 = 1.5 and 𝐴𝐹 = 2 and drops
distinctively when 𝐴𝐹 is greater than 2. Specially, for LM-
TBE, the accuracy ranges from 56% (𝐴𝐹 = 4) - 91% (𝐴𝐹 =

1.5). The accuracy decreases by 4% from𝐴𝐹 = 1.5 to𝐴𝐹 = 2,
while 19% from 𝐴𝐹 = 2 to 𝐴𝐹 = 3. Similarly, for RAD-BEFS,
the accuracy is 98% for 𝐴𝐹 = 1.5 and 97% for 𝐴𝐹 = 2, and
decreases by 13% for 𝐴𝐹 = 3 and 20% for 𝐴𝐹 = 4. Given the
experiment results above, we conclude that FF-SSD generates
an accurate distribution when at least half of the workloads
are observed (𝐴𝐹 ≤ 2) and may occur more errors beyond
that point.

5 CONCLUSION AND FUTUREWORK
We present Fast-Forwardable SSD, to the best of our knowl-
edge, the first ML-based SSD aging framework that gener-
ates representative future wear-out states. We examine the
effectiveness and usefulness of FF-SSD across state-of-the-
art SSD development platforms. Our evaluations show that
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FF-SSD generates the desired age states of SSDs with high
accuracy under real-world workloads. This work suggests
many promising directions, and our immediate plan includes
improving the accuracy through adaptive acceleration and
predicting the wear states on real SSDs.
Improving accuracy through adaptive acceleration.We
plan to implement outlier detection [17] on𝑊𝐴𝐹 to further
improve accuracy and achieve adaptive acceleration control.
𝑊𝐴𝐹 is defined by the increased writes caused by the back-
ground processes, measured as the ratio of total internal to
external writes. A stable𝑊𝐴𝐹 over a long observation is an
indicator that SSD is in a steady-state (i.e., the activeness of
SSD background operations keeps at the same level). In this
case, FF-SSD submits the estimation with high confidence
and a more aggressive 𝐴𝐹 should be applied to maximize
aging efficiency. On the other hand, if the current𝑊𝐴𝐹 is an
outlier from the past observations, indicative of the changes
in host-side workloads or configurations, FF-SSD should
adopt a moderate 𝐴𝐹 or even revoke the estimation to avoid
high inference error.
Predicting on the wear states real SSDs. Our work would
have greater applicability if we extend our validation to real
SSDs where their internal details and states such as FTL logic
and erase counts are not accessible. For these cases, we plan
to use the information available through the SSDs’ SMART
(Self-Monitoring, Analysis, and Reporting Technology) in-
terface. For example, the changes in percentage lifetime used
can be used to estimate how much host data the SSD can
sustain under the current workload before its failure.
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