Understanding Configuration Dependencies of
File Systems

Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, Mai Zheng
Department of Electrical and Computer Enginnering, lowa State University
<tmahmud,duozhang,ogatla,mai>@iastate.edu

ABSTRACT

File systems have many configuration parameters. Such flexi-
bility comes at the price of additional complexity which could
lead to subtle configuration-related issues. To address the
challenge, we study the potential configuration dependen-
cies of a representative file system (i.e., Ext4), and identify a
prevalent pattern called multi-level configuration dependen-
cies. We build a static analyzer to extract the dependencies
and leverage the information to address different configu-
ration issues. Our preliminary prototype is able to extract
64 multi-level dependencies with a low false positive rate.
Additionally, we can identify multiple configuration issues
effectively.

CCS CONCEPTS

« Software and its engineering — File systems manage-
ment; - Computer systems organization — Reliability.

KEYWORDS
File Systems, Configurations, Dependencies, Reliability

ACM Reference Format:

Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, Mai Zheng.
2022. Understanding Configuration Dependencies of File Systems.
In 14th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage 22), June 27-28, 2022, Virtual Event, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3538643.3539756

1 INTRODUCTION
1.1 Motivation

File systems (FS) play an essential role in modern society
for managing precious data. To meet diverse needs, file sys-
tems are often designed with a large set of configuration
parameters controllable via many utilities (e.g., mke2fs [40],

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotStorage °22, June 27-28, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9399-7/22/06.
https://doi.org/10.1145/3538643.3539756

Parameters: Impact:

P1, P2, P3 If dependencies satisfied,
Dependencies: resizing FS results in

@ P1=TRUE metadata corruption

@ P3>P2
P1: -0 sparse_super2 P3: <size>
P2: <size> write -
metadata

create o — e read

Fs 1 Ext4 Image , metadata

Figure 1: A Configuration-Related Issue of Ext4. When
sparse_super?2 feature is enabled and the size parame-
ter of resize2fs is larger than the Ext4 size, expanding
the file system results in metadata corruption.

resize2fs [53]), which enables end users to tune the sys-
tems with different tradeoffs. For example, the Ext4 file sys-
tem contains more than 85 configuration parameters with
different types, the combination of which represents over
1037 configuration states [8].

While configuration parameters have improved the system
flexibility, they introduce additional complexity for reliability.
Subtle correctness issues often rely on specific parameters to
trigger [13, 69]; consequently, they may elude intensive test-
ing and affect end users negatively. For example, in December
2020, Windows users observed that ChkDsk, the checker util-
ity of the NTFS file system, destroyed NTFS on SSDs [33, 63].
It was confirmed later that the issue required two specific
parameters to manifest: the ‘/f” parameter of ChkDsk and
another (unnamed) parameter in the Windows operating
system (OS) [62].

Similarly, Figure 1 shows another configuration-related
issue involving Ext4 and the resize2fs utility [53]. Two con-
ditions must hold to trigger the bug: (1) the sparse_super?2
feature is enabled in Ext4 (via mke2f's); (2) the value of the
size parameter of resize2fs must be larger than the size
of Ext4 (i.e., expanding the file system). Once triggered, the
bug will corrupt the Ext4 metadata with incorrect free blocks.
The root cause behind the issue was logical, i.e., with the
specific configuration parameters, the free blocks count for
the last group of file system was calculated before adding
new blocks to the file system at the time of expansion.

https://doi.org/10.1145/3538643.3539756
https://doi.org/10.1145/3538643.3539756

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

Due to the combinatorial explosion of configuration states
and the substantial time needed to scrutinize file systems
under each configuration state [11], it is practically impos-
sible to exhaust all states for testing today. Moreover, with
more and more heterogeneous devices (e.g., SmartSSD [59])
and advanced features (e.g., DAX [14]) being introduced, the
potential configuration states of file systems are expected to
grow rapidly. Therefore, effective methods to help improve
configuration-related testing and identify critical configura-
tion issues efficiently are much needed.

1.2 Limitations of the State of the Art

There are practical test suites (e.g., xfstest [68]) to ensure
the correctness of file systems under different configurations.
Unfortunately, their coverage in terms of configuration is
limited based on our study: less than half of configuration
parameters are used, which reflects the need of better tool
support (see §2 for details).

Configuration-related issues have also emerged in other
software systems and have received great attention [9, 12, 34,
69]. Unfortunately, existing efforts mostly only consider one
single application, which is fundamentally limited for file
system configurations involving multiple components (e.g.,
ChkDsk and NTFS, resize2fs and Ext4). More discussion is
in §2 and §5.

1.3 Contributions

This paper presents one of the first steps to address the in-
creasing configuration challenge of file systems. Inspired by
a recent study on configuration issues in cloud systems [9],
we focus on configuration dependency, which describes the
dependent relation among configuration parameters. Such
dependency has been identified as a key source of complex-
ity causing configuration problems, and capturing the de-
pendency is essential for improving existing configuration
design and tooling [9, 61, 69].

While the basic concept of configuration dependency has
been proposed (§2), the understanding of specific depen-
dency patterns and usage in the context of file systems is
still limited (to the best of our knowledge). Therefore, we
first study the potential configuration dependency of Ext4,
the default file system on Linux, by scrutinizing the source
code and 67 configuration-related bug cases. In doing so, we
answer one important question: what critical configuration
dependencies exist in file systems?

Our study reveals a prevalent pattern called multi-level
configuration dependencies. Many classic configuration con-
straints (e.g., value range [69]) are still observed in our dataset,
which only involves parameters within one single compo-
nent. More importantly, there are implicit dependencies be-
tween parameters from different components of the Ext4

Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, Mai Zheng

@ create @mount use FS
(a): [mke2fs > mount]—',rf)_(té_l K

Bonline

L defragment
(b): (mke2fs J>(mount}>{ Ext4 >(eddefrag

@ offline

resize

Figure 2: Methods of Configuring File Systems. This
figure shows four typical scenarios to configure an
FS: (a) at creation (e.g., mke2fs) or mount time (mount)
before usage; (b) via online utilities (e.g., e4defrag); (c)
via offline utilities (e.g., resize2fs).

ecosystem, which we call cross-component dependency. For
example, in Figure 1, the size parameters of mke2fs and
the size parameter of resize2fs have a cross-component
dependency. The majority (97.0%) of issues in our dataset
requires meeting such complicated dependencies to manifest,
which implies the complexity of the problem as well as the
need of new solution.

Next, based on the study, we explore another question:
how to extract and use the dependencies with minimal man-
ual effort? One new challenge is to establish the mapping
between parameters of different utilities, which tend to have
different ways of configuration handling. We address the
challenge based on one key observation: all components
need to access the FS metadata structures. In other words,
we can leverage the shared metadata structures as a bridge
to connect relevant configuration parameters of different
components.

We incorporate the idea with the classic taint analysis [38]
and build a static analyzer based on LLVM [60] to extract
the multi-level dependencies automatically. The preliminary
prototype is able to extract 64 multi-level dependencies with
a low false positive rate (7.8%). Moreover, based on the ex-
tracted dependencies, we were able to identify a number
of configuration issues efficiently, including 12 inaccurate
documentations and 1 bad configuration handling where
resize2fs may corrupt the file system unexpectedly.

2 BACKGROUND & EXTENDED
MOTIVATION

File System Configurations. The configuration methods
of file systems are different from that of many applications,
which makes it more challenging. As shown in Figure 2, a
typical file system may be configured through a set of utilities
at four different stages:

e Create. When creating file systems, the mkfs utility
(e.g., mke2f's for Ext4) generates the initial set of con-
figurations.

Understanding Configuration Dependencies of

File Systems
FS (0S) Four Stages of Configuration

Create | Mount Online | Offline
Ext4 (Linux) [40] [44] [20], [53] | [18], [53]
XFS (Linux) [43] [44] [65], [66] | [64], [67]

BtrFS (Linux) | [42] [44] [4], [6] [5]
UFS (FreeBSD) [49] [45] [29], [54] | [17], [25]

ZFS (FreeBSD) [71] [73] [74], [75] [72]

MINIX (Minix) | [41] [46] - [23]
NTFS (Windows) | [21] (48] [10], [15] | [10], [55]
APFS (Mac0S) [16] [16], [47] [16] [16], [24]

Table 1: Examples of configuration methods for differ-
ent file systems. The last four columns list example
utilities that can affect the configuration states of cor-
responding file systems.

e Mount. When mounting file systems, certain config-
urations can be specified via mount (e.g., ‘-0 dax’ to
enable the DAX feature).

e Online. Many utilities can change file system config-
urations directly by modifying the metadata online
(e.g., defragmentater e4defrag [20], Windows NTFS
checker ChkDsk [10]).

e Offline. Offline utilities can also modify file system im-
ages and change the configurations (e.g., resize2fs [53],
e2fsck [18])

Note that all the utilities have different configuration pa-
rameters to control their own behaviors, which will eventu-
ally affect the file system state. Moreover, the validation of
parameters may occur at both user level and kernel level. For
example, the ‘-0 inline_data’ parameter of mke2f's and the

‘-0 dax’ of mount are further validated in the ext4_fill_super

function of Ext4. So we believe it is necessary to consider
the file system itself as well as all the associated utilities as
an FS ecosystem to address the configuration challenge. For
simplicity, we call the file system and utilities as components
within the FS ecosystem.

Also, for simplicity, Figure 2 only shows the (partial) Ext4
ecosystem as an example. In fact, the configuration methodol-
ogy is common across different file systems. As summarized
in Table 1, many popular file systems follow similar modular
designs and can be configured via different utilities at multi-
ple stages. In other words, the configuration challenge is not
limited to Ext4 or Linux.

FS Test Suites. Practical test suites have been created to en-
sure the correctness of file systems under various configura-
tions. Unfortunately, due to the complexity of configurations,
their coverage in terms of configuration is limited. As shown
in Table 2, less than half of configuration parameters are used
in the de fatco test suites of the popular Ext4 ecosystem (i.e.,
xfstest [68], e2fsprogs-test [19]). Note that Table 2 only
counts whether a parameter has been used or not. Since each

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

Test Target # of Config. Parameter
Suite Software | Total Used
xfstest Ext4 >85 29 (< 34.1%)
e2fsprogs e2fsck >35 6 (< 17.1%)
-test resize2fs | >15 7 (< 46.7%)

Table 2: Configuration Coverage of Test Suites.

parameter may have a wide range of values representing
different states, the total number of un-tested configuration
states is much more than the number of unused parameters,
which implies the need of tool support.

Configuration Constraints & Dependencies. Configura-
tion constraints specify the configuration requirements (e.g.,
data type, value range) of software [69]. Intuitively, such
information can help identify important configuration states,
and it has proved to be effective for addressing configuration-
related issues in a wide range of applications [9, 34, 69, 70].
Configuration dependency is one special type of constraint
describing the dependent correlation among parameters,
which has shown recently to be critical for addressing com-
plex configuration issues in cloud systems [9]. For simplicity,
we use constraints and dependencies interchangeably in the
rest of the paper. Note that although the basic concepts have
been proposed, there is limited understanding of them in the
context of file systems. This paper attempts to fill the gap.

3 WHAT CONFIGURATION
DEPENDENCIES EXIST IN FILE SYSTEMS

The key challenge in addressing configuration-related is-
sues of file systems lies in the fact that file systems can be
configured at different stages via different utilities (§2). The
potential constraints may exist either within individual com-
ponents or across components, which are often not specified
well (largely due to the combinatorial explosion of states). As
the first step to address the challenge, we perform a study on
the representative Ext4 ecosystem. We present our method-
ology (§3.1) and key findings (§3.2) in this section.

3.1 Methodology

Our dateset includes two parts: (1) the source code of Ext4
and five important utilities (i.e., mke2f's, mount, e2defrag,
resize2fs, e2fsck, which are described in Table 3); (2) a
set of 67 configuration-related bug patches from the Ext4
ecosystem, which are collected via the following two steps:

First, in order to effectively identify configuration-related
patches, we apply keyword search to the commit history
of the git repositories of Ext4 and its utilities. We use a set
of configuration-related keywords, such as ‘configuration’,
‘parameter’, ‘feature’, ‘option’, etc. The resulting set contains
about 2,700 patches.

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, Mai Zheng

File System Usage Scenario Description # of | Multi-Level Config. Dependencies
(key configuration utilities are in bold) Bug SD CPD CCD
mke2fs - mount - Ext4 create & mount an FStouse | 13 | 13 (100%) | 1(7.7%) 13 (100%)
mke2fs - mount - Ext4 - e4defrag online defragmentation 1 1 (100%) - 1 (100%)
mke2fs - mount - Ext4 - umount - resize2fs resize an umounted FS 17 17 (100%) - 17 (100%)
mke2fs - mount - Ext4 - umount - e2fsck check FS consistency 36 | 36 (100%) | 4 (11.1%) 34 (94.4%)
Total | 67 | 67 (100%) | 5(7.5%) | 65 (97.0%)

Table 3: Distribution of Configuration Bugs in Four Scenarios. This table shows the distribution of 67 configuration
bugs in four typical usage scenarios of file system. The last three columns shows the percentages of bug cases that
involve Self-Dependency (SD), Cross-Parameter Dependency (CPD), and Cross-Component Dependency (CCD),

respectively.

Multi-Level Config. Dependencies Description Exist? | Count

Self Dependency Data Type parameter P must be of a specific data type (e.g., integer) Y 33
(SD) Value Range P must be within a specific value range (e.g., P < 4096) Y 30
Cross-Parameter Control P1 of C1 can be enabled iff P2 of C1 is enabled/disabled Y 4
Dependency (CPD) Value P1’s value depends on P2 ’s value (e.g., P1 < P2) N -
Cross-Component Control P1 of C1 can be enabled iff P2 of C2 is enabled/disabled Y 1
Dependency Value P1’s value depends on P2 from another component N -
(CCD) Behavioral component C1’s behavior depends on P2 of C2 Y 64

Total 5/7 132

Table 4: A Taxonomy of Critical Configuration Dependencies. This table summarizes the multi-level configuration
dependencies observed in our dataset. Pn means parameter, Cn means component. The last column shows the

count of each sub-category of dependency observed.

Second, we randomly sample 400 patches from the set for
manual examination. Each of the sampled patch is analyzed
by at least two researchers, and those irrelevant to reliability
issues or do not rely on specific configurations are excluded
based on our domain knowledge. The final set contains 67
configuration-related bug patches.

Note that the methodology is commonly used in empir-
ical studies of practical systems [36, 37, 76]. While time-
consuming, it has proved to be valuable for driving system
improvements. On the other hand, similar to previous stud-
ies, the findings of our study should be interpreted with the
method in mind. For example, the patch collection was based
on configuration-related keywords and manual examination,
which might be incomplete. Nevertheless, we believe such
study is one important step to understand and address the
configuration challenge.

3.2 Findings

Based on the dataset, we analyze each patch and the relevant
source code in depth to understand the logic, which enables
us to identify the configuration usage scenarios as well as
configuration constraints that are critical. We summarize our
findings in Table 3 and Table 4 and discuss them below.

Finding #1: The majority cases (97.0%) involves critical pa-
rameters from more than one components. The first column

of Table 3 shows four typical usage scenarios of Ext4 which
cover all bug cases in our dataset (67 in total). 97.0% of the
bug cases require specific parameters from at least two key
utilities (bold) to manifest. This reflects the complexity of
the configuration issues, and suggests that we cannot only
consider one single component.

Finding #2: Multi-level configuration dependencies are preva-
lent. We classify the configuration constraints derived from
our dataset into three major categories as follows:

o Self Dependency (SD) means individual parameters
must satisfy their own constraints (e.g., data type or
value range). For example, the blocksize parameter
of mke2fs has a value range of 1024 - 65536.

e Cross-Parameter Dependency (CPD) means multi-
ple parameters of the same component must satisfy rel-
ative relation constraints. For example, two mke2f's pa-
rameters meta_bg and resize_inode cannot be used
together.

e Cross-Component Dependency (CCD) means the
parameters or behaviors of one component depend on
the parameters of another component. The dependen-
cies described in Figure 1 belong to this category.

Understanding Configuration Dependencies of
File Systems

As summarized in Table 4, each major category may con-
tain a couple of sub-categories describing more specific con-
straints. Among them, SD and CPD only involve parameters
within one single component, while CCD always involves
multiple components. Together, these constraints form the
pattern of multi-level configuration dependencies. Note that
we only observe 5 out of 7 sub-categories in the dataset so
far. We include the 2 unseen “Value” sub-categories based
on the literature [69] for completeness.

For each observed sub-category, we further count the crit-
ical dependencies, i.e., the dependencies directly determine
the manifestation of the bug cases (e.g., the dependencies
described in Figure 1). We are able to derive 132 critical
dependencies manually in total, which is larger than the
number of bug cases. This is because a bug case may exhibit
multiple critical dependencies (i.e., multi-level configuration
dependencies).

As shown in the last three columns of Table 3, SD and
CCD are almost always involved in all scenarios (100% and
97% respectively), while CPD is non-negligible (7.5%). This
is because SD represents relatively simple constraints which
always need to be satisfied the first (e.g., having the correct
spelling). Such simple constraints are relatively easy to check
and have been the focus of existing work [34]. However, this
does not mean that 100% of the bugs could be avoided if SD
is checked or satisfied. For example, a bug related to both
the bigalloc and extent parameters (i.e., there is a CPD
involved) may still occur even if the two parameters are
spelled correctly. In other words, only considering simple
constraints (e.g., SD) is not enough.

4 HOW TO EXTRACT & USE
MULTI-LEVEL CONFIGURATION
DEPENDENCIES

4.1 Deriving Configuration Dependencies

We build a static analyzer based on the LLVM framework [60]
and apply the classic taint analysis [38] to track the propa-
gation of each configuration parameter along the data-flow
path in the source code. Specifically, we maintain a set to
keep the initial configuration variables and any variables
derived from the initial configuration variables. When a new
variable is added to the set, we add the corresponding in-
struction to the taint trace too. We maintain a map to track if
a variable is derived from multiple parameters. Based on the
taint traces, we further analyze the dependencies between
variables based on the multi-level dependency patterns de-
rived in our study. The extracted dependencies are stored
in JSON files which describe both the parameters and the
associated constraints.

One unique challenge we encounter is how to establish the
mapping between parameters of different components of the

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

FS ecosystem. Unlike modern cloud systems (e.g., Hadoop [2],
OpenStack [50]), the components in the FS ecosystem tend
to load configurations in different ways and process equiv-
alent FS information using different variables or functions.
We address the challenge based on one key observation: all
components need to access the FS metadata structures. So we
can leverage shared metadata structures to bridge relevant
parameters of different components.

At the time of this writing, the static analyzer can han-
dle intra-procedure taint analysis but not inter-procedure
analysis, so we can only extract dependencies via a few pre-
selected functions. But as we will show in §4.3, we can al-
ready extract critical dependencies effectively.

4.2 Using Configuration Dependencies

There are various ways to leverage configuration depen-
dencies including configuration fault injection [34], con-
figuration rule management [58], detecting error-prone de-
signs [69], code refactoring, etc. As a starting point, we ex-
plore three specific usages: (1) ConDocCk checks the poten-
tial inconsistency between user manuals and source code in
terms of configuration requirements, which has been a long-
standing issue in open source software [52]. (2) ConHan-
dleCk intentionally violates dependencies to test if the FS
ecosystem can handle violations gracefully. (3) ConBugCk
is a plugin for enhancing existing FS test suites and bug de-
tectors which often have limited configuration coverage (§2).
It replaces the configuration loading logic and manipulates
configurations without violating dependencies. This is to al-
low the enhanced tool drive deeply into the target code area
(e.g., newly added features) under a variety of configuration
states (without early crashing due to shallow errors).

4.3 Preliminary Results

Table 5 summarizes our preliminary results of extracting
multi-level configuration dependencies using the static ana-
lyzer. Overall, we are able to extract 64 unique dependencies
automatically, including 32 SD, 26 CPD, and 6 CCD. The over-
all false positive rate is 7.8% (5/64), which is comparable to
cDEP [9]. Note that our study has shown the importance of
identifying CCD (e.g., 97% in Table 3), while we only extract
a relatively small number of CCD in the experiments. This is
mainly because CCD represents complex relations requiring
sophisticated inter-procedure analysis. We expect to extract
more dependencies especially CCD once the static analyzer
scales out with more complete inter-procedure analysis.
Based on the 59 extracted true dependencies, we have iden-
tified 12 inaccurate documentation issues. For example, there
is a cross-parameter dependency in mke2f's specifying that
meta_bg and resize_inode can not be used together, which
is missing from the manual. Moreover, we have found one

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, Mai Zheng

File System Usage Scenario Self Dependency Cross-Parameter Dep. | Cross-Component Dep.
(key configuration utilities are in bold) Extracted FP Extracted FP Extracted FP
mke2fs - mount - Ext4 31 0 24 1(4.2%) 0 -
mke2fs - mount - Ext4 - e4defrag 31 0 24 0 0 -
mke2fs - mount - Ext4 - umount - resize2fs 32 3(9.4%) 26 0 6 1(16.7%)
mke2fs - mount - Ext4 - umount - e2fsck 32 0 26 0 0 -
Total Unique 32 3(9.4%) 26 1(3.9%) 6 1(16.7%)

Table 5: Evaluation Results of Extracting Multi-Level Configuration Dependencies. This table shows the numbers
of multi-level dependencies extracted under each scenario. ‘FP’ means False Positive.

unexpected configuration handling case where resize2fs
may corrupt the file system.

5 RELATED WORK

Analysis of Software Configurations. Configuration is-
sues have been well studied in many software applications [9,
12, 13, 34, 69]. For example, ConfErr [34] manipulates param-
eters to emulate human errors; ConFu [13] fuzzes annotated
variables in configuration files and tests selected functions.
In general, these works do not consider deep dependencies
of the software. The closest work is cDEP [9], which looks
into the configuration dependencies in cloud systems (e.g.,
Hadoop, OpenStack). cDEP observes inter-component depen-
dencies, which are different from our cross-component de-
pendencies because Hadoop components share XML con-
figuration files and use generic configuration libraries [1],
which makes them equivalent to one single program in terms
of configuration. In contrast, the dependencies in our study
may across different programs and the user-kernel boundary.
Also, cDEP relies on a Java framework which cannot handle
C-based file systems.

Reliability of File Systems. Great efforts have been made
to improve the reliability of file systems [3, 22, 35, 39, 51] and
their utilities [27, 28, 30, 56, 57]. For example, Prabhakaran
et al. [51] analyze the failure policies of four file systems and
propose improved designs based on the IRON taxonomy;
Spiffy [56] creates an annotation language for developing
correct utilities; SQCK [30] and RFSCK [27] improve file
system checkers to avoid inaccurate fixes. While effective,
these works do not consider multi-component configura-
tion issues. The dependencies derived in this paper could
potentially be integrated with existing tools to improve their
coverage. Therefore, we view them as complementary.

6 DISCUSSIONS & FUTURE WORK

The work presented in this paper suggests many opportuni-
ties for further improvements and follow-up research, e.g.:

Automation, Integration, Evaluation, & Open Source.
Our current static analysis requires certain manual annota-
tions, which we hope to reduce. Also, we will fully implement

inter-procedure analysis and integrate with complementary
tools (e.g., fuzzers) to amplify the effectiveness. We plan to
apply the methodology to analyze other popular open-source
file systems (e.g., XFS, BtrFS) and evaluate with more met-
rics (e.g., false negatives, overhead). Ultimately, we hope to
develop the prototype into a practical open source tool to
help address storage configuration issues in general.

Dependencies between file systems and other software.
Researchers and practitioners have observed functionality
or correctness dependencies between local file systems and
other software (e.g., databases [77], distributed storage sys-
tems [7, 26, 31, 32]), many of which are also related to specific
configurations (at different layers). The configuration depen-
dencies studied in this work may serve as a foundation for
investigating such cross-layer issues, which we leave as fu-
ture work.

Better configuration design. An alternate perspective of
the configuration challenge studied in this work is that we
may have too many parameters today. One might argue that
it is perhaps better to reduce the parameters to avoid vulner-
abilities or confusions, instead of adding new configurations
for more features. Also, one might suggest that (in theory)
we can implement every utility functionality in the file sys-
tem itself to replace the modular design commonly used in
practice (e.g., Table 1) and thus avoid the multi-level config-
uration dependencies. Essentially, these are trade-offs of the
configuration design that deserve more investigation from
the communities, which we leave as future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful feedback. We also thank Runzhou Han
and Wei Xu for their help on reproducing and validating a
few bug cases. In addition, Carson Love and Jahid Hasan
helped investigate the configurations on Windows and Ma-
cOS. This work was supported in part by National Science
Foundation (NSF) under grants CNS-1855565, CCF-1853714,
CCF-1910747 and CNS-1943204. Any opinions, findings, and
conclusions expressed in this material are those of the au-
thors and do not necessarily reflect the views of the sponsor.

Understanding Configuration Dependencies of
File Systems

REFERENCES

(1]

(2]
(3]

Apache Common Configuraitons. https://commons. apache.org/
proper/commons-configuration/userguide/upgradeto2_0.html.
Apache Hadoop. https://hadoop.apache.org/.

James Bornholt et al. “Specifying and checking file system crash-
consistency models”. In: SIGPLAN Not. 51.4 (2016). por: 10.1145/
2954679.2872406.

btrfs-balance. https://man7.org/linux/man - pages/man8/btrfs-
balance.8.html.

btrfs-check. https://man7.org/linux / man - pages / man8 / btrfs -
check.8.html.

btrfs-scrub. https://man7.org/linux/man-pages/man8/btrfs-scrub.8.
html.

Jinrui Cao et al. “PFault: A General Framework for Analyzing the Re-
liability of High-Performance Parallel File Systems”. In: Proceedings
of the 2018 International Conference on Supercomputing (ICS). 2018.
Zhen Cao et al. “Carver: Finding Important Parameters for Storage
System Tuning”. In: Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST). 2020.

Qingrong Chen et al. “Understanding and Discovering Software
Configuration Dependencies in Cloud and Datacenter Systems”. In:
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 2020.

chkdsk. https://docs. microsoft.com/en - us/windows - server/
administration/windows-commands/chkdsk.

Edmund Clarke et al. “Model Checking and the State Explosion
Problem”. In: Jan. 2012, pp. 1-30. ISBN: 978-3-642-35745-9. por: 10.
1007/978-3-642-35746-6_1.

ctest. https://cmake.org/cmake/help/latest/manual/ctest.1.html.
Huning Dai et al. “CONFU: Configuration Fuzzing Testing Frame-
work for Software Vulnerability Detection”. In: Int. J. Secur. Softw.
Eng.) 1.3 (2010). por: 10.4018/jsse.2010070103.

DAX: Page cache bypass for filesystems on memory storage. https:
//lwn.net/Articles/618064/.

defrag. https://docs. microsoft.com/ en - us/ windows - server/
administration/windows-commands/defrag.

disk utility. https://www.dssw.co.uk/reference/diskutil.html.

dump. https://www.freebsd.org/cgi/man.cgi? query =dump &
apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+
Ports&arch=default&format=html.

e2fsck. https://linux.die.net/man/8/e2fsck.

e2fsprogs-test. https://sourceforge.net/projects/e2fsprogs/files/
e2fsprogs-TEST/.

eddefrag. https://man7.org/linux/man-pages/mang/e4defrag.8.html.
format. https:// docs . microsoft. com/ en - us/ windows - server /
administration/windows-commands/format.

Daniel Fryer et al. “Recon: Verifying File System Consistency at
Runtime”. In: Proceedings of the 10th USENLX Conference on File and
Storage Technologies (FAST). 2012.

fsck. https://man.minix3.org/cgi-bin/man.cgi?query=fsck&apropos=
0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html.
fsck_apfs. https://www.manpagez.com/man/8/fsck_apfs/.

fsck_ufs. https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs&
apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE +and+
Ports&arch=default&format=html.

Aishwarya Ganesan et al. “Redundancy Does Not Imply Fault Toler-
ance: Analysis of Distributed Storage Reactions to Single Errors and
Corruptions”. In: Proceedings of the 15th Usenix Conference on File
and Storage Technologies (FAST). 2017.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]
[45]

[46]

[47]
[48]

[49]
[50]

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

Om Rameshwar Gatla et al. “Towards Robust File System Checkers”.
In: Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST). 2018.

Om Rameshwar Gatla et al. “Towards Robust File System Checkers”.
In: ACM Transactions on Storage (TOS) 14.4 (2018). por: 10.1145/
3281031.

growfs. https://www.freebsd.org/cgi/man.cgi? query =growfs &
apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+
Ports&arch=default&format=html.

Haryadi S. Gunawi et al. “SQCK: A Declarative File System Checker”.
In: Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI). 2008.

Runzhou Han et al. “A Study of Failure Recovery and Logging of
High-Performance Parallel File Systems”. In: ACM Transactions on
Storage (TOS) 18.2 (2022). poI: 10.1145/3483447.

Runzhou Han et al. “Fingerprinting the Checker Policies of Parallel
File Systems”. In: IEEE/ACM Fifth International Parallel Data Systems
Workshop (PDSW). 2020.

HotHardware: Windows 10 20H2 Update Reportedly Damages SSD
File Systems If You Run ChkDsk. https://hothardware.com/news/
windows-10-20h2-update-damages-ssd-file- systems- chkdsk.
Lorenzo Keller et al. “ConfErr: A tool for assessing resilience to
human configuration errors”. In: Proceedings of the 38th IEEE In-
ternational Conference on Dependable Systems and Networks (DSN).
2008.

Seulbae Kim et al. “Finding Semantic Bugs in File Systems with an
Extensible Fuzzing Framework”. In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP). 2019.

Lanyue Lu et al. “A Study of Linux File System Evolution”. In: Proceed-
ings of the 11th USENIX Conference on File and Storage Technologies
(FAST). 2013.

Shan Lu et al. “Learning from Mistakes: A Comprehensive Study on
Real World Concurrency Bug Characteristics”. In: Proceedings of the
13th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 2008.

Aravind Machiry et al. “DR. Checker: A Soundy Analysis for Linux
Kernel Drivers”. In: Proceedings of the 26th USENIX Conference on
Security Symposium (SEC). 2017.

Changwoo Min et al. “Cross-Checking Semantic Correctness: The
Case of Finding File System Bugs”. In: Proceedings of the 25th Sym-
posium on Operating Systems Principles (SOSP). 2015.

mke2fs. https://linux.die.net/man/8/mke2fs.

mkfs. https://man.minix3.org/cgi- bin/man.cgi? query =mkfs &
apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&
format=html.

mkfs.btrfs. https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.
html.

mkfs.xfs. https://man7.org/linux/man-pages/man8/mkfs.xfs.8.html.
mount. https://man7.org/linux/man-pages/man8/mount.8.html.
mount. https://www.freebsd.org/cgi/man.cgi? query =mount &
apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+
Ports&arch=default&format=html.

mount. https://man.minix3.org/cgi-bin/man.cgi?query=mount&
apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&
format=html.

mount_apfs. https://www.manpagez.com/man/8/mount_apfs/.
mountvol. https://docs.microsoft.com/en-us/windows- server/
administration/windows-commands/mountvol.

newfs. https://www.freebsd.org/cgi/man.cgi?newfs(8).

OpenStack. https://www.openstack.org/.

https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://hadoop.apache.org/
https://doi.org/10.1145/2954679.2872406
https://doi.org/10.1145/2954679.2872406
https://man7.org/linux/man-pages/man8/btrfs-balance.8.html
https://man7.org/linux/man-pages/man8/btrfs-balance.8.html
https://man7.org/linux/man-pages/man8/btrfs-check.8.html
https://man7.org/linux/man-pages/man8/btrfs-check.8.html
https://man7.org/linux/man-pages/man8/btrfs-scrub.8.html
https://man7.org/linux/man-pages/man8/btrfs-scrub.8.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://doi.org/10.4018/jsse.2010070103
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://www.dssw.co.uk/reference/diskutil.html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://linux.die.net/man/8/e2fsck
https://sourceforge.net/projects/e2fsprogs/files/e2fsprogs-TEST/
https://sourceforge.net/projects/e2fsprogs/files/e2fsprogs-TEST/
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://man.minix3.org/cgi-bin/man.cgi?query=fsck&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=fsck&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://www.manpagez.com/man/8/fsck_apfs/
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://doi.org/10.1145/3281031
https://doi.org/10.1145/3281031
https://www.freebsd.org/cgi/man.cgi?query=growfs&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=growfs&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=growfs&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://doi.org/10.1145/3483447
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://linux.die.net/man/8/mke2fs
https://man.minix3.org/cgi-bin/man.cgi?query=mkfs&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=mkfs&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=mkfs&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.xfs.8.html
https://man7.org/linux/man-pages/man8/mount.8.html
https://www.freebsd.org/cgi/man.cgi?query=mount&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=mount&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=mount&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=mount&apropos=0&sektion=1&manpath=Minix+3.1.5&arch=default&format=html
https://www.manpagez.com/man/8/mount_apfs/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://www.freebsd.org/cgi/man.cgi?newfs(8)
https://www.openstack.org/

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

(51]

(52]

(72]

(73]

(74]

[75]

Vijayan Prabhakaran et al. “IRON File Systems”. In: Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles (SOSP).
2005.

Ariel Rabkin et al. “Static extraction of program configuration op-
tions”. In: Proceedings of the 33rd International Conference on Software
Engineering (ICSE). 2011.

resize2fs. https://linux.die.net/man/8/resize2fs.

restore. https://www.freebsd.org/cgi/man.cgi? query =restore &
apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE +and+
Ports&arch=default&format=html.

shrink. https://docs. microsoft.com/ en - us/ windows - server /
administration/windows-commands/shrink.

Kuei Sun et al. “Spiffy: Enabling File-System Aware Storage Appli-
cations”. In: Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST). 2018.

Swift. https://docs.openstack.org/swift/latest/.

Chungiang Tang et al. “Holistic Configuration Management at Face-
book”. In: Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP). 2015.

The First and Only Adaptive Computational Storage Platform. https://
www.xilinx.com/applications/data-center/computational-storage/
smartssd.html.

The LLVM Compiler Infrastructure. https://llvm.org/.

Scott Klemmer Tianyin Xu Vineet Pandey. “An HCI View of Config-
uration Problems”. In: arXiv. 2016.

Windows 10 2004/20H2: Microsoft fixes chkdsk issue in update KB4592438.
https://borncity.com/win/2020/12/21/windows- 10- 2004 - 20h2-
microsoft-fixes-chkdsk-issue-in-update-kb4592438/.

Windows 10 20H2: ChkDsk damages file system on SSDs with Update
KB4592438 installed. https://borncity.com/win/2020/12/18/windows-
10- 20h2 - chkdsk - damages- file - system - on - ssds - with - update -
kb4592438-installed/.

xfs_admin. https://man7.org/linux/man-pages/man8/xfs_admin.8.
html.

xfs_fsr. https://man7.org/linux/man-pages/man8/xfs_fsr.8.html.
xfs_growfs. https://man7.org/linux/man-pages/man8/xfs_growfs.8.
html.

xfs_repair. https://man7.org/linux/man-pages/man8/xfs_repair.8.
html.

xfstest. https://github.com/kdave/xfstests.

Tianyin Xu et al. “Do Not Blame Users for Misconfigurations”. In: Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP). 2013.

Zuoning Yin et al. “An Empirical Study on Configuration Errors in
Commercial and Open Source Systems”. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP). 2011.
zfs-create. https://www.freebsd.org/cgi/man.cgi?query=zfs-create&
sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+
Ports.

zfs-destroy. https://www.freebsd.org/cgi/man.cgi? query =zfs-
destroy & sektion = 8 & apropos = 0 & manpath = FreeBSD + 13 .1 -
RELEASE+and+Ports.

zfs-mount. https://www.freebsd.org/cgi/man.cgi?query=zfs-mount&
sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+
Ports.

zfs-rollback. https://www.freebsd.org/cgi/man.cgi? query =zfs-
rollback & sektion = 8 & apropos = 0 & manpath = FreeBSD + 13.1 -
RELEASE+and+Ports.

zfs-set. https://www.freebsd.org/cgi/man.cgi? query =zfs- set&
apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE +and+
Ports&arch=default&format=html.

[76]

(77

Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, Mai Zheng

Duo Zhang et al. “A Study of Persistent Memory Bugs in the Linux
Kernel”. In: Proceedings of the 14th ACM International Conference on
Systems and Storage (SYSTOR). 2021.

Mai Zheng et al. “Torturing Databases for Fun and Profit”. In: Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI). 2014.

https://linux.die.net/man/8/resize2fs
https://www.freebsd.org/cgi/man.cgi?query=restore&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=restore&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=restore&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
https://docs.openstack.org/swift/latest/
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
 https://llvm.org/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://man7.org/linux/man-pages/man8/xfs_admin.8.html
https://man7.org/linux/man-pages/man8/xfs_admin.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://man7.org/linux/man-pages/man8/xfs_growfs.8.html
https://man7.org/linux/man-pages/man8/xfs_growfs.8.html
https://man7.org/linux/man-pages/man8/xfs_repair.8.html
https://man7.org/linux/man-pages/man8/xfs_repair.8.html
https://github.com/kdave/xfstests
https://www.freebsd.org/cgi/man.cgi?query=zfs-create&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-create&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-create&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback&sektion=8&apropos=0&manpath=FreeBSD+13.1-RELEASE+and+Ports
https://www.freebsd.org/cgi/man.cgi?query=zfs-set&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=zfs-set&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=zfs-set&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Limitations of the State of the Art
	1.3 Contributions

	2 Background & Extended Motivation
	3 What Configuration Dependencies Exist in File Systems
	3.1 Methodology
	3.2 Findings

	4 How to Extract & Use Multi-Level Configuration Dependencies
	4.1 Deriving Configuration Dependencies
	4.2 Using Configuration Dependencies
	4.3 Preliminary Results

	5 Related Work
	6 Discussions & Future Work

