
When F2FS Meets Address Remapping
Yongmyung Lee∗, Jong-Hyeok Park∗, Jonggyu Park∗, Hyunho Gwak∗,

Dongkun Shin∗, Young Ik Eom∗∗, Sang-Won Lee∗
∗Sungkyunkwan University

∗∗ Dept. of Electrical and Computer Engineering College of Computing and Informatics,
Sungkyunkwan University

{feellym,akindo19,jonggyu,gusghrhkr,dongkun,yieom,swlee}@skku.edu

ABSTRACT
While gaining popularity in mobile devices, F2FS, a flash-
friendly variation of log-structured file system, reveals three
drawbacks: segment cleaning overhead, metadata update
overhead, and file fragmentation, which becomes conspicu-
ous under random update workloads. This paper suggests
for the first time to leverage the address-remap technique in
flash storage to remedy such pitfalls in F2FS. Our approach
can, while preserving the benefit of log-structured writes,
achieve the eventual effect of in-place update, completely
preventing three drawbacks of F2FS. It can thus significantly
outperform ext4 as well as vanilla F2FS under random up-
date workloads. Armed with another write mode, F2FS will
become competitive for a wider range of applications.

CCS CONCEPTS
• Information systems→ Storage architectures; Flash
memory; • Software and its engineering→ File systems
management.

KEYWORDS
F2FS, Address-Remap

ACM Reference Format:
Yongmyung Lee∗, Jong-Hyeok Park∗, Jonggyu Park∗, HyunhoGwak∗,,
Dongkun Shin∗, Young Ik Eom∗∗, Sang-Won Lee∗. 2022. When
F2FS Meets Address Remapping. In 14th ACM Workshop on Hot
Topics in Storage and File Systems (HotStorage ’22), June 27–28,
2022, Virtual Event, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3538643.3539755

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539755

1 INTRODUCTION
Owing to its flash-awareness, the F2FS filesystem [8] has got-
ten the spotlight in various flash-memory storage systems. In
particular, smartphone manufacturers have launched prod-
ucts employing F2FS to access universal flash storage devices.
Compared to the in-place-update (IPU) policy of legacy file
systems (e.g. , ext4), the out-of-place-update (OPU) policy of
F2FS enables to better exploit the performance potential of
the flash storage by transforming many small random writes
into a single large sequential one [17].

However, the OPU strategy incurs several drawbacks. First,
OPU generates invalid blocks at each update operation. To
reclaim the invalid blocks, F2FS should perform filesystem-
level garbage collection, known as segment cleaning. Second,
OPU requires additional metadata updates to keep track of
the up-to-date data location because the corresponding block
locations are changed by update operations. Finally, even
when a file has initially been allocated with sequential blocks,
its blocks can be disassembled, so called file fragmentation,
when the file is randomly updated. The fragmented file will
show a poor sequential read performance, since many small
I/O requests must be transferred to the storage device [14].
To remedy such intrinsic problems of OPU in F2FS, this

paper suggests to exploit the address-remap (AR) technique
in flash storage, which modifies the internal address map-
ping table of the flash storage to change the logical block
address (LBA) of written data. Although the AR technique
has been used to mitigate various filesystem overheads such
as journaling [5, 7, 19] and segment cleaning [7, 15, 21], those
studies apply the AR technique only to a particular compo-
nent of the filesystems, instead of generic write operations.

In contrast to the previous researches, we present RM-IPU
(Remap-based In-Place Update), which incorporates AR into
F2FS to relieve the drawbacks with OPU. Data blocks are
first written in the OPU manner and then are changed as if
they are updated in place. Specifically, RM-IPU first stores
the updated data in a log-structured manner and modifies
the device-internal mapping table so that the old filesystem
blocks seamlessly point to the updated data. In this way, RM-
IPU achieves the benefit of the OPU block allocation, which

31

https://doi.org/10.1145/3538643.3539755
https://doi.org/10.1145/3538643.3539755
https://doi.org/10.1145/3538643.3539755

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Y. Lee et al.

 0

 20

 40

 60

 0 50 100 150 200

B
a
n
d
w

id
th

 (
M

iB
/s

)

Written Bytes (GiB)

F2FS
F2FS-L

ext4

Figure 1: RandomWrite Performance

generates sequential writes, and the IPU policy, which main-
tains the filesystem-level contiguity of the original blocks
and eliminates metadata update. Furthermore, since RM-IPU
immediately invalidates newly allocated filesystem blocks
for the updated data after AR, it can minimize the segment
cleaning overheads.

In summary, the RM-IPU approach is novel in that it keeps
F2FS’s strength (i.e. , flash-friendly sequential write) but at
the same time can overcome three weaknesses resulting from
the OPU policy in F2FS. As a result, RM-IPUwill provide both
benefits of IPU-based and OPU-based filesystems. We believe
RM-IPU facilitates the wide adoption of F2FS in practice by
gracefully handling random update workloads, which are
pervasive in database systems.

2 BACKGROUND AND MOTIVATION
2.1 F2FS: Basics
F2FS is a variant of log-structured filesystem, which is reno-
vated with flash-awareness. F2FS divides the storage space
into segments, and multiple consecutive segments compose a
section that are designed to align with the erase blocks of the
underlying flash storage. Also, F2FS adopts log-structured
block allocation with OPU, thereby reshaping small random
writes into a large sequential one. However, due to such
design choices, F2FS inevitably shows several drawbacks.
First, F2FS should collect stale data to secure free space

because it does not allow IPU. Next, the location of data
keeps changing whenever the data are updated. Thus, F2FS
should re-write the corresponding metadata blocks to cor-
rectly point to the up-to-date location of data. Finally, F2FS
is vulnerable to fragmentation because it allocates blocks in
a log-structured manner without IPU. For example, suppose
that two threads simultaneously update existing data. Due
to the OPU policy, those data will be appended at the end of
the log, thereby being apart from the other blocks of the files.
Moreover, if the update operations involve synchronous op-
erations, those data from different threads interleave in the
same segment because of the log-structured block allocation.
There has been previous research to mitigate the afore-

mentioned problems. First, SSR (Slack Space Recycling)[12]

reuses invalid blocks without performing segment cleaning
to eliminate the segment cleaning overheads. However, it
generate small-sized random writes to fill up the holes. Also,
SSR still requires metadata updates since the data location is
still modified. Second, delayed allocation defers block alloca-
tion to the flush time and merges multiple blocks from the
same file into a contiguous fragment. However, synchronous
operations dilute the effectiveness of delayed allocation since
they force the corresponding data to be flushed immediately.

2.2 Drawbacks of F2FS
In this section, we experimentally demonstrate the afore-
mentioned three drawbacks of F2FS.
Segment Cleaning Overheads To quantitatively mea-

sure the segment cleaning overheads of F2FS, we perform a
randomwrite experiment with Samsung 970 evo 250GB. First,
we fill up half of the storage space with dummy files. Sec-
ond, we repetitively generate multi-threaded 4KiB random
writes while issuing fsync every 10 operations. We conduct
experiments using ext4 filesystem and two F2FS variants con-
figured with default (denoted F2FS) and lfs mode (denoted
F2FS-L) mount option which employs adaptive logging and
append logging, respectively. Figure 1 shows the bandwidth
of the random write operations. At first, F2FS outperforms
ext4 by 42% before 100GiB data are written, because F2FS
reshapes small random writes into larger sequential ones.
Specifically, the average I/O size of F2FS is 41.2KiB whereas
that of ext4 is 4.2KiB. However, as the segment cleaning oc-
curs, the performance of F2FS begins to decrease significantly
due to the increased amount of filesystem I/Os induced by the
segment cleaning. As a result, F2FS shows 40% lower band-
width than ext4 after 100GiB are written. Although the SSR
method of F2FS mitigates the segment cleaning overheads, it
still suffers from performance degradation because it incurs
small random writes and still generates metadata update
operations.F2FS-L, like F2FS, shows a better performance be-
fore 100GiB data are written, but after that, the performance
decreased significantly due to segment cleaning overhead,
and showed 53% lower performance than ext4.
Metadata Update Overheads As mentioned before,

F2FS suffers from frequent metadata updates because the
OPU policy of F2FS changes the location of data whenever
the data are updated. To measure the amount of metadata
additionally updated, we create 1GiB files and perform 4KiB
random writes to the files while measuring the amount of
writes at the block layer. Here, we also use buffered I/Os and
issue fsync every 10 operations. As a result, F2FS requires
around 1.8 times more amount of writes for the same amount
of data, compared with ext4. This difference comes from the
fact that F2FS continuously updates the metadata to refer to
the corresponding data at every update while the location of

32

When F2FS Meets Address Remapping HotStorage ’22, June 27–28, 2022, Virtual Event, USA

data is invariable on ext4 due to its IPU. Specifically, F2FS
generates 1.02GiB of metadata writes whereas the amount
of metadata writes on ext4 shows only 0.12GiB.
Fragmentation Overheads Since F2FS allocates new

data blocks in a log-structured way without IPU, it appends
all the updated blocks, instead of maintaining the original
data layout. Therefore, F2FS experiences severe file fragmen-
tation under update-heavy workloads [13]. To analyze this
overhead, we first create a single 8GiB file andmeasure the se-
quential read performance after issuing 2GiB random writes.
In terms of throughput, F2FS shows around 43% lower per-
formance than ext4 because it generates more I/O requests
for the same amount of data due to file fragmentation. Specif-
ically, F2FS requires 42.5 times more I/O requests than ext4.
In the meantime, the mean request size of ext4 is 733KiB
while that of F2FS is only 17KiB.

Overall, the flash-awareness of F2FS such as log-
structuring shows performance benefits over ext4 when
it comes to random writes. However, in order to maintain
flash-awareness, F2FS is inevitably taxed in the form of seg-
ment cleaning, metadata overheads, and fragmentation. In
addition, as shown in Section 4, F2FS suffers from excessive
device-level physical write amplification for random updates,
which contradicts to the belief about F2FS.

3 REMAP-BASED IN-PLACE-UPDATE

Key Idea To mitigate the drawbacks of log-structured
writes such as segment cleaning and metadata update over-
head, we leverage the address remap technique in the write
process of F2FS. To be concrete, as shown in Figure 2, once
new update blocks are successfully written to the storage
in log-structured manner, we issue the address remap com-
mand to modify the device-internal mapping table so that
the LBAs of old blocks point to the physical pages of new
blocks in flash storage. In this way, while keeping the benefit
of flash-friendly write pattern for random updates, F2FS can
achieve the effect that new segment writes for update blocks
are not made and accordingly need not update the metadata
(i.e. , direct-index blocks). In addition, the logical address
contiguity of file objects will be preserved despite random
updates. Once this idea is properly embodied, RM-IPU will
have the benefits of both in-place-update and out-of-place
file systems: fast random writes, no file system-level write
amplification, and better sequential read bandwidth.

How RM-IPUWorks: An Illustration Let us illustrate
how RM-IPU works using Figure 2. Assume a file consists of
four data blocks (D0 - D3) whose current LBAs are LBA#12 -
LBA#15, respectively. Provided that newly appended blocks
are located at cold segment, all blocks of D0, D1, D2, and

Figure 2: RM-IPU : An Illustration

D3 are stored in a cold segment (i.e. , segment #3 in Fig-
ure 2). Then, for new update blocks for D1 and D3 (i.e. , D1’
and D3’), those two update blocks will be now directed to
a hot segment, segment #20 (1 in Figure 2). For these up-
dates, RM-IPU keeps tracks that their original and new LBA
pairs (LBA#13, LBA#80) and (LBA#15, LBA#81) . Once all the
blocks are durably written to the storage, the address map-
ping for LBA#13 and LBA#15 are changed to point to new
physical pages for D1’ and D3’ by calling the address-remap
command (2 in Figure 2). It should be noted that, unlike
vanilla F2FS, the direct-index block need not be updated. In
this way, for D1 and D3, even though updated, their old LBAs
remain intact. This in turn indicates that the metadata for
the updated data block D1 and D3 need not be updated.
In summary, the address-remap in RM-IPU is, once new

update blocks are persistently written to segment in a log
structured manner, used to revert the effect of appending
data blocks to segment (3 in Figure 2). The reverted segment
space will be reused to store new update blocks.

Write and Address Remapping Writes operations are
categorized into two types: append writes and update writes.
The append writes indicate that new blocks are appended at
the end of a file object, while the update writes overwrite
old blocks with new blocks. RM-IPU performs the original
append logging of F2FS in the case of append writes and
exploits the address remap command to deal with update
writes. For this reason, RM-IPU is expected to perform best
for workloadswith small randomupdates for files (e.g. , OLTP
databases with high fsync overhead for direct-index blocks).
RM-IPU also assumes the multi-head logging strategy is used
in F2FS [8], which places data blocks into different segment
logs according to their hotness. In the case of append writes,
they are allocated to cold segment and will remain there un-
til updated. On the other hand, RM-IPU stores the updated
writes in the hot segments without metadata update since
they become invalidated immediately after the correspond-
ing AR is successfully performed. Therefore, RM-IPU can

33

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Y. Lee et al.

minimize the segment cleaning overhead as well as metadata
update overhead.
We observe that the current RM-IPU design and imple-

mentation can cause the consistency problem upon system
crashes. In particular, RM-IPU which assumes the roll for-
ward recovery in F2FS [8] will not recover the consistent
state when a crash is encountered after calling the remap
commands for update writes and also writing the metadata
blocks for append writes. This issue is left as future work.
Segment Cleaning Both old and new blocks involved

in an address-remapped command should not be garbage-
collected by F2FS until the command completes inside stor-
age. Otherwise, data corruption may occur since the remap
command may point to an invalid LBA. Therefore, RM-IPU
prevents such blocks from being garbage-collected (i.e. , seg-
ment cleaning) by keeping track of all the segments contain-
ing any address-remapping blocks and discarding them from
victim candidates.

F2FS Recovery and RM-IPU While rebooting from
crashes, F2FS checks the latest valid checkpoint and per-
forms the roll-back recovery to this point. Afterward, F2FS
performs the roll-forward recovery, which searches for meta-
data blocks (i.e., node blocks of F2FS) with a fsync mark
written after the checkpoint. In this way, it can restore to the
checkpointed state with additional updates of fsynced data.

On the other hand, the current version of RM-IPU follows
the recovery mechanism of ext4 ordered-mode and F2FS
with O_DIRECT and IPU mode. If a system crash occurs
while performing writes followed by fsync, RM-IPU may
recover certain data even without fsync completion if its
remap operation has been completed. For example, suppose
an application issues write operations followed by fsync.
First, RM-IPU (1) allocates new blocks, (2) performs remap
operations, (3) writes corresponding metadata, and (4) re-
turns fsync completion to the application. Here, if a system
crash takes place between (2) – (3), RM-IPU recovers the up-
dated data although the fsync completion is not return to the
application. This recovery mechanism is different from the
original F2FS in that F2FS negates such updates by restoring
the filesystem state to the latest checkpoint. To follow the
recovery semantic of F2FS or ext4 data journal mode, we can
add a special module to invalidate the remap operations.

4 PERFORMANCE EVALUATION
In this section, we present performance evaluation of our im-
plementation of RM-IPU under various workloads. Through
experiments, we confirm the following:

• RM-IPU can significantly improve random write perfor-
mance by reducing segment cleaning overhead.

• RM-IPU enables sequential continuity in F2FS, which gen-
uinely achieves the aim of LFS and avoids scattered read.

4.1 Evaluation Setup
All the experiments were conducted with FEMU, a QEMU
based NVMe SSD emulator [10] to which we added the
address-remap functionality. We run FEMU on Intel i7 CPU
3.40GHz processor and 64GB DRAM. The kernel of the
FEMU host system is Linux 4.19 and a 32GB SSD with 4GB
over-provisioning space (12.5 %) is emulated. The flash page
size is set to 4KB and the page read, program, and erase laten-
cies are 50us, 500us, and 5ms, respectively. In this experiment,
we assume that reverse L2P mapping table is maintained
at the byte-addressable non-volatile memory to guarantee
the consistency of address remapping. Hence, we imposed
additional latency(i.e. 0.1us) per mapping table entry. In ad-
dition, the volatile write cache option [11] and the discard
command [18] in FEMU are enabled to reflect the fsync()
overhead and to reduce SSD’s internal write amplification,
respectively. To analyze the effectiveness of RM-IPU, we
experience the ext4 filesystem and two F2FS variants men-
tioned in section 2.2 above.

4.2 Workloads
We use a synthetic fio workload and realistic workload,
TPC-C on MySQL 5.7 to verify the efficacy of RM-IPU.

SyntheticWorkload The FIO benchmark tool [2] is used
to demonstrate the advantages of RM-IPU for random writes.
we created four 4GB files and then measured the amount of
writes at the block layer while running four threads, each
of which performs 4KiB random writes to the files. This
configuration is similar to the one used in Section 2.

Realistic Workload The TPC-C benchmark [16] is used
to understand the benefit of RM-IPU against random write
intensive OLTP workload. The benchmark was running 16
clients against each of initial database of 200 warehouses
with 16KB page size.

4.3 Performance Analysis
We explain the overall performance benefit of RM-IPU using
Figure 3 and 4. While running the workloads, we measured
bandwidth (throughput in Figure 4) as well as filesystem and
FTL WAF (denoted as FS-WAF and FTL-WAF, respectively).

F2FS Drawbacks As mentioned in Section 2.2, F2FS suf-
fers from considerable write amplification due to chronic
drawbacks of LFS which of excessive use of logical space. Fig-
ure 3 shows that F2FS and F2FS-L fall to performance degra-
dation when the free blocks run out (1 in Figure 3). This
indicates that LFS exacerbates the FTL-WAF more quickly
due to the metadata overhead. After securing the free blocks,

34

When F2FS Meets Address Remapping HotStorage ’22, June 27–28, 2022, Virtual Event, USA

❶ ❷ ❸

Figure 3: Synthetic Workload (FIO)

 0

 2

 4

 6

Throughput

T
p

m
C

 (
x
1

0
0

0
)

F2FS

 0

 50

 100

 150

IO Size

A
v
g

.
IO

 S
iz

e
 (

K
iB

)

F2FS-L EXT4

 1

 3

 5

 7

FS-WAF FTL-WAF

RM-IPU

Figure 4: Realistic Workload (TPC-C)

the performance is recovered (2 in Figure 3). However, the
throughput deteriorates again (3 in Figure 3) because all free
segments are exhausted. This comes with the cost of random
writes arising from valid pages in victim blocks for F2FS and
segment cleaning overhead for F2FS-L. We also observed a
log-on-log problem [9, 20] that worsen the FTL-WAF because
the out-of-update policy of F2FS uses excessive space, which
is still considered valid pages on SSD. Although the SSR alle-
viates the segment cleaning overheads, it is unable to resolve
the performance degradation problem because it incurs small
random writes and experiences severe metadata update over-
head under the random write-intensive workload. ext4 also
achieves ideal WAF in virtue of in-place-update manner data
layout and apt use of discard command. However, ext4 ex-
periences severe performance degradation due to the small
random writes and thus RM-IPU outperforms upto 1.4x in
terms of throughput.
In the realistic workload experiment, we found two dis-

tinct differences from synthetic workload. First, the overall
throughput gap in the TPC-C benchmark is much smaller

Table 1: request size and count in sequential read

F2FS ext4 RM-IPU
Mean request size (KiB) 17 740 737

Request count 498K 11K 11K

than the FIO benchmark. Because the read-to-write ratio of
TPC-C benchmark is 1.9:1 [3] and all methods are similar
in the light of random read operation. In particular, the ran-
dom write performance gain from buffer hits is amortized.
Second, the FIO benchmark fills only half of the storage
space but as the SSD was filled up with the ever-growing
database in the TPC-C benchmark, the FTL-WAF of both
ext4 and RM-IPU is increased up to 2.5 and 2.4 respectively.
Especially, the FS-WAF of F2FS metadata update overhead
The IO size in Figure 4 explains the performance benefit
of RM-IPU. Both ext4 and F2FS show small random write
size, particularly, SSR mode in F2FS gives rise to excessive
small random writes. F2FS-L suffers from writes induced
by the segment cleaning. Conversely, RM-IPU invalidates
blocks that are randomly updated using address remapping,
eliminating segment cleaning overhead and limiting the file
fragmentation in F2FS.
Sequential Continuity Now we examine how RM-

IPU can remedy the fragmentation problem in F2FS. Table 1
shows the mean request sizes and counts under sequential
read operations with 1MB block size following a random
write of 8GB files. Due to the file fragmentation, F2FS shows
a small size of 17 KiB with a considerable number of requests
because it experiences severe file fragmentation. However,
RM-IPU retains similar size and number of request with
ext4’s. This indicates that address remapping functionality
of RM-IPU can prevent fragmentation proactively which
does not incur unnecessary data copying. We also confirmed
that the same performance gap (i.e. 43%) between F2FS and
RM-IPU which is consistent with the experimental results
using commercial SSD in Section 2.2.
To sum up, experimental results confirmed that RM-IPU

reduces the segment cleaning overhead and prevents the file
fragmentation problem under the random write-intensive
workloads, and thus it resolves the drawbacks of F2FS.

5 FUTURE DIRECTIONS
We have so far shown that the address remapping technique
can be used to remove a few intrinsic drawbacks of F2FS
particularly under the workloads with small random updates.
Though, several key technical issues have to be resolved for
our RM-IPU approach to be viable and also there are a few
opportunities for further optimizations, as listed below.

35

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Y. Lee et al.

Evaluations By evaluating using comprehensive work-
loads, we need to investigate the benefits and limitations of
RM-IPU. In addition, it would be interesting to compare our
RM-IPU with remap-based segment cleaning scheme [7, 21].
While RM-IPU invokes remap eagerly just after writes and
thus aims at eliminating segment cleaning, the latters applies
remap lazily upon segment cleaning.

Atomicity and Durability We will investigate how the
in-storage address-remap command can be exploited to accel-
erate various performance-critical operations in F2FS such
as checkpoint, fsync, and atomic write. For example, RM-IPU
will enable to achieve the atomic propagation of multiple
blocks with less DRAM resource and storage than the exist-
ing implementation in F2FS [4]. It is also worth investigating
whether RM-IPU can easily support transactional features
such as multi-file updates, shadow garbage collection, and
stolen pages [1], with minimal change in F2FS codebase.
To Remap or Not The benefit of RM-IPU will stand

out for small-sized random updates, but its overhead for
the address-remap command exists. Thus, its benefit and
overhead need to be judiciously traded. For instance, for
large batch update (e.g. , > 64KB), the benefit by address-
remap can be outweighed by its run-time overhead inside
flash storage. As another example, when a file is already
heavily fragmented, the benefit of RM-IPU is unclear.
Adaptive Write Mode Selection in F2FS F2FS cur-

rently supports three write modes of append logging (LFS),
threaded logging (SSR), and in-place-update (IPU)[6]. RM-
IPU can be regarded as a new write mode, remap-based even-
tual IPU, which works well for random update workloads.
Armed with four write modes, F2FS will be competitive for
more diverse workloads. To realize its full potential, it needs
to adaptively select the best write mode for each workload.
Furthermore, we can imagine more fine-grained write mode
that supports according to the per-file write pattern.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our
shepherd, Keith Smith, for their valuable comments and
feedback. This work was supported by Samsung Research
Funding & Incubation Center of Samsung Electronics under
Project Number SRFC-IT1802-07.

REFERENCES
[1] 2022. exF2FS: Transaction Support in Log-Structured Filesystem. In

20th USENIX Conference on File and Storage Technologies (FAST 22).
USENIX Association, Santa Clara, CA.

[2] Axboe, Jens. 2022. Fio-flexible io tester. http://freecode.com/projects/
fio.

[3] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B
Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. 2011.

TPC-E vs. TPC-C: Characterizing the new TPC-E benchmark via an
I/O comparison study. ACM Sigmod Record 39, 3 (2011), 5–10.

[4] Seungyong Cheon and Youjip Won. 2017. Exploiting Multi-Block
Atomic Write in SQLite Transaction. In Proceedings of the Interna-
tional Conference on High Performance Compilation, Computing and
Communications. 23–27.

[5] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. 2009. JFTL: A flash
translation layer based on a journal remapping for flash memory. ACM
Transactions on Storage (TOS) 4, 4 (2009), 1–22.

[6] Jaegeuk Kim. 2012. F2FS. https://www.kernel.org/doc/Documentation/
filesystems/f2fs.txt.

[7] Dong Hyun Kang, Gihwan Oh, Dongki Kim, In Hwan Doh, Changwoo
Min, Sang-Won Lee, and Young Ik Eom. 2018. When Address Remap-
ping Techniques Meet Consistency Guarantee Mechanisms. In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
18). 1–8.

[8] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
2015. F2FS: A New File System for Flash Storage. In 13th USENIX
Conference on File and Storage Technologies (FAST 15). 273–286.

[9] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and
Arvind. 2016. Application-Managed Flash. In 14th USENIX Conference
on File and Storage Technologies (FAST 16). 339–353.

[10] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Matias Bjørling, and Haryadi S. Gunawi. 2018. The CASE
of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator.
In 16th USENIX Conference on File and Storage Technologies (FAST 18).
83–90.

[11] NVM Express. 2019. NVM Express Revision 1.4. https://nvmexpress.
org/developers/nvme-specification/.

[12] Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H.
Noh. 2010. Optimizations of LFS with Slack Space Recycling and
Lazy Indirect Block Update. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference. 1–9.

[13] Jonggyu Park and Young Ik Eom. 2020. Anti-Aging LFS: Self-
Defragmentation With Fragmentation-Aware Cleaning. IEEE Access 8
(2020), 151474–151486.

[14] Jonggyu Park and Young Ik Eom. 2021. FragPicker: A New Defragmen-
tation Tool for Modern Storage Devices. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 280—-294.

[15] Jonggyu Park, Dong Hyun Kang, and Young Ik Eom. 2016. File de-
fragmentation scheme for a log-structured file system. In Proc. ACM
APSys. 1–7.

[16] Percona-Lab 2008. tpcc-mysql benchmark. https://github.com/
Percona-Lab/tpcc-mysql.

[17] Mendel Rosenblum and John K Ousterhout. 1992. The design and
implementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS) 10, 1 (1992), 26–52.

[18] Frank Shu. 2007. Notification of Deleted Data Proposal for ATA-ACS2.
http://t13.org.

[19] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman, Nisha
Talagala, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2015.
ANViL: Advanced Virtualization for Modern Non-Volatile Memory
Devices. In 13th USENIX Conference on File and Storage Technologies
(FAST 15). 111–118.

[20] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swami-
nathan Sundararaman. 2014. Don’t Stack Your Log On My Log. In 2nd
Workshop on Interactions of NVM/Flash with Operating Systems and
Workloads (INFLOW 14). 1–10.

[21] You Zhou, Qiulin Wu, Fei Wu, Hong Jiang, Jian Zhou, and Changsheng
Xie. 2021. Remap-SSD: Safely and Efficiently Exploiting SSD Address
Remapping to Eliminate Duplicate Writes. In 19th USENIX Conference
on File and Storage Technologies (FAST 21). 187–202.

36

http://freecode.com/projects/fio
http://freecode.com/projects/fio
https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://github.com/Percona-Lab/tpcc-mysql
https://github.com/Percona-Lab/tpcc-mysql

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 F2FS: Basics
	2.2 Drawbacks of F2FS

	3 Remap-based In-Place-Update
	4 Performance Evaluation
	4.1 Evaluation Setup
	4.2 Workloads
	4.3 Performance Analysis

	5 Future Directions
	References

