
Compaction-Aware Zone Allocation for LSM based
Key-Value Store on ZNS SSDs

Hee-Rock Lee, Chang-Gyu Lee, Seungjin Lee, and Youngjae Kim
Department of Computer Science and Engineering

Sogang University, Seoul, Republic of Korea
{heerock,changgyu,seungjinn,youkim}@sogang.ac.kr

ABSTRACT
Unlike traditional block-based SSDs, ZonedNamespace (ZNS)
SSDs expose storage through the zoned block interface, com-
pletely eliminating the need for in-device garbage collection
(GC) and relinquishing this responsibility to applications. As
a result, application-aware data placement decisions give the
opportunity for applications on the host to perform efficient
GC. Meanwhile, RocksDB for ZNS SSD places data with sim-
ilar invalidation times (lifetimes) in the same zone through
ZenFS (a user-level file system) using the LIfetime-based
Zone Allocation algorithm (LIZA), and minimizes the GC
overhead of valid data copy when reclaiming a zone. How-
ever, LIZA, which allocates zones by predicting the lifetime
of each SSTable according to the level of the hierarchical
structure of the LSM-tree, is very inefficient in minimiz-
ing the write amplification (WA) problem due to inaccurate
predictions of SSTable lifetimes. Instead, based on our ob-
servation that the deletion time of SSTables in the LSM-tree
is solely determined by the compaction process, we pro-
pose a novel Compaction-Aware Zone Allocation algorithm
(CAZA) that allows the newly created SSTables to be deleted
together after merging in the future. CAZA is implemented
in RocksDB’s ZenFS and our extensive evaluations show that
CAZA significantly reduces the WA overhead compared to
LIZA.

CCS CONCEPTS
• Information systems→ Storage management.

KEYWORDS
Key-Value Store, Log-structured Merge-tree, ZNS SSD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539743

ACM Reference Format:
Hee-Rock Lee, Chang-Gyu Lee, Seungjin Lee, and Youngjae Kim.
2022. Compaction-Aware Zone Allocation for LSM based Key-Value
Store on ZNS SSDs. In Proceedings of 14th ACM Workshop on Hot
Topics in Storage and File Systems (HotStorage’22). ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3538643.3539743

1 INTRODUCTION
ZNS SSD [7] introduces the concept of a zone that forces se-
quential writes and disallows overwrites. Due to restrictions
on write patterns, ZNS SSDs do not perform Garbage Collec-
tion (GC) in the Flash Translation Layer (FTL). The removal
of in-device GC improves I/O performance by eliminating
write amplification (WA) [1, 12, 16, 19]. However, in order
to free up space inside the device, applications using ZNS
SSDs must perform zone cleaning, which is an operation
that erases a whole zone. If valid data remains in the zone
selected as the victim for zone cleaning, the WA problem
still exists due to the copying of valid data [4, 16].
Nevertheless, applications can make application-aware

data placement decisions, reducing WA by minimizing the
amount of data copied during zone cleaning. To reduce this
amount, data with the same lifetime should be written in the
same erase unit (which is a zone for ZNS SSDs). Applications
running on top of ZNS SSDs can directly determine the zone
in which data will be placed, thus reducing the amount of
valid data present in the zone when deletion is about to be
performed. This greatly reduces data copying during zone
cleaning, minimizing WA problems [3, 17, 18].

RocksDB for ZNS SSD uses ZenFS [6] (a user-level file sys-
tem for ZNS-enabled RocksDB) for efficient data placement
to minimize zone cleaning overhead. ZNS-enabled RocksDB
is a Log-structured Merge tree-based key-value store run-
ning on top of a ZNS SSD. Specifically, ZenFS employs the
Lifetime-based Zone Allocation algorithm (LIZA) that places
data with the same lifetime in the same zone. LIZA predicts
the lifetime of each data using the following characteristics
of LSM-tree. In the LSM-tree, SSTables to be updated and
deleted soon are located at a higher level, and SSTables up-
dated relatively later are located at a lower level. LIZA gives
a lifetime to each level of the LSM-tree based on hotness
(write frequency), predicts the lifetime of the newly created
SSTable according to the lifetime of the level to which the

93

https://doi.org/10.1145/3538643.3539743
https://doi.org/10.1145/3538643.3539743

HotStorage’22, June 27–28, 2022, Virtual Event, USA H. Lee et al.

SSTable belongs, and places SSTables with the same lifetime
in the same zone, allowing them to be deleted together when
compaction is triggered in the future. However, LIZA fails
to minimize the WA problem by not accurately identifying
SSTables to be deleted together due to lifetime prediction
failures.

A critical limitation of LIZA is that LIZA does not consider
how SSTables are invalidated in the LSM tree. Thus, this pa-
per proposes a novel Compaction-Aware Zone Allocation
algorithm (CAZA), the design of which is based on the obser-
vation that a group of SSTables deleted/invalidated together
is determined by the LSM-tree’s compaction algorithm. The
compaction job selects a set of SSTables with overlapping
key ranges at adjacent levels, merges them into one or more
new SSTables, and delete the SSTables used as compaction
input for merging. Considering the compaction procedure,
CAZA places the newly created SSTable in the zone with the
most SSTables that overlap with its key range. Then, when
compaction is triggered in the future, the SSTable selected as
the victim for merging is merged with the SSTables already
in the same zone and deleted/invalidated together. This min-
imizes the amount of valid data remaining in the zone to
a minimum, thereby minimizing the overhead due to the
copying of valid data before erasing zones.

This paper makes the following contributions.
• We present a novel zone placement algorithm that is aware

of the LSM-tree’s compaction process in ZenFS.CAZAwill
place SSTables with overlapping key ranges in the same
zone, so that the SSTables selected for compaction of the
LSM-tree are within the same zone.

• Specifically, CAZA was designed considering the follow-
ing characteristics of LSM-tree. First, SSTables are deleted
and invalidated only during compaction, and new SSTa-
bles are created accordingly. Second, during compaction,
the SSTable selected as the victim and the SSTables that
overlap the key range of this SSTable are deleted and in-
validated together.

• For evaluation, we implemented CAZA by modifying
RocksDB version 6.14. Evaluations confirm that CAZA
reduced copies of valid data incurred during zone clean-
ing by up to 2 times and WA by up to 7.4% compared to
LIZA for write-intensive synthetic workloads.

2 BACKGROUND
2.1 Zone Namespace SSD
The NVMe Zoned Namespace (ZNS) is a new standard ex-
tension adopting zone interface for flash-based SSDs. The
fundamental building block of ZNS is a zone that exports
an erase unit of the NAND flashes directly to the host ma-
chine [2]. ZNS forms multiple NAND erase blocks into a
fixed-size zone and enforces only sequential write with reset
commands for erasing. Due to the concise interface, ZNS

SSTable

SSTable SSTable

SSTable SSTable SSTable SSTable

Memory

Persistent Storage

Level 0

Level 1

Level 2

MemTable

Flush

Compaction

Compaction

Figure 1: Description of the architecture and operation
of RocksDB’s LSM-tree

eliminated the garbage collection typically residing in con-
ventional SSDs.

With the change in the hardware landscape, the ZNS re-
quires modifications in the software aspect. First, applica-
tions take over free space reclamation [2, 3, 10, 17]. Instead
of FTL, applications must explicitly erase zones. This means
that copying valid data between erase units should be car-
ried out by the host. Second, applications should perform
data placement by choosing which zone to write their data.
These two changes imply that write amplification can be
eliminated or at least minimized by the host.

2.2 Log-Structured Merge-Tree
LSM-tree [15] is a data structure optimized for write
performance and is used in various key-value stores for
RocksDB [8], LevelDB [9], and MongoDB [13]. LSM-tree de-
livers high write throughput by generating sequential writes
through buffering and batching. The LSM-tree consists of
multiple levels and MemTable. MemTable temporarily stores
key-value pairs in the main memory. Later, MemTable will
be flushed to Level 0. Every SSTable in the persistent storage
covers some key range in the sorted order. And except for
Level 0, all SSTables partition the key range of the level.
Each level has a size limit, and the size limit increases

exponentially. When a level grows over its size limit, com-
paction is triggered on that level and pushes down the data
by merging SSTables. Specifically, The compaction triggered
at Level 𝑖 selects a victim SSTable from the Level 𝑖 . Then the
compaction also picks all other SSTables with overlapping
key ranges from Level 𝑖 and Level 𝑖+1. With all selected SSTa-
bles, the compaction merges them and writes one or more
new SSTables to the next level. In this case, new SStables will
be at Level 𝑖 + 1. Since SSTables are immutable, overwritten
or deleted keys are reclaimed during the compaction.

2.3 ZenFS
Ideally, the zone interface should have eradicated the addi-
tional write amplification from the underlying I/O stacks by
delegating space management to the application. However,
we observed that the benefit of the zone interface does not
happen smoothly in practice. In particular, when the existing

94

Compaction-Aware Zone Allocation for LSM based Key-Value Store on ZNS SSDs HotStorage’22, June 27–28, 2022, Virtual Event, USA

Valid SSTable Invalid SSTable

After Compaction

Before Compaction

25-50 54-99Level 1

0-27 28-52 53-80 81-99Level 2

A

B C

54-99Level 1

0-35 40-52 53-80 81-99Level 2
D E

(a) LSM-tree

New SSTable Compaction Input Victim Zone (Reset)

54-99 25-50
Zone 0 (Medium)

Zone 2 (Empty)

0-27 81-9928-52 53-80
Zone 1 (Long)

Zone 3 (Empty)

Before Compaction

After Compaction

54-99 25-50
Zone 0 (Medium)

0-27 28-52
Zone 1 (Long)

A B C

A B C

0-35 40-52
Zone 2 (Long)D E

81-9953-80

Zone 3 (Long)
53-80 81-99

Valid Data Copy

(b) LIZA

Before Compaction

After Compaction

53-80 81-99 54-99

0-27 28-52 25-50 53-80 81-99 54-99
B C A Zone 0

Zone 2

Zone 1

Zone 3

0-27 28-52 25-50
B C A Zone 0

0-35
D Zone 2

Zone 1

40-52
E Zone 3

(c) CAZA

Figure 2: Examples showing the efficiency of zone cleaning of CAZA compared to LIZA

application is ported to the zone interface, it requires mid-
dleware for zone management such as consolidating data
smaller than the zone size because the data structure of the
existing application is not designed to fit into the zone inter-
face perfectly.

ZenFS is a representative example of the application-level
middleware mentioned above. ZenFS is a backend module
in RocksDB responsible for allocating zones for SSTables
newly created and reclaiming free space out of zones with
invalid data. Among the features of ZenFS, zone cleaning is
the root cause of bringing the removed write amplification
back to RocksDB. Zone cleaning is similar to that of segment
cleaning of the log-structured file system (LFS) [14]. If there
is no zone available for writes, the zone cleaning reclaims
the free zone as follows. Step 1: Select the victim zone to
erase. Step 2: Copy all valid data in the victim zone to the
free zone. Step 3: After securing valid data, the zone reset
command is sent to the ZNS SSD to erase the victim zone.
Since write amplification occurs due to valid data copy, it is
crucial for ZenFS to have the minimum or none of the valid
data in the victim zone.

3 ZONE ALLOCATION IN ZENFS
To control the amount of valid data remaining in the zone
to be erased, ZenFS utilizes the data hotness immanent in
the LSM-tree [11]. Essentially, the levels of the LSM-tree are
designed to represent the frequency of data modification
or hotness. In the LSM-tree, batched updates are flushed to
the uppermost level. Then, the compaction moves the data
down to the lowermost level over time. As such, data at
the uppermost level is most often invalidated, and data at
the lowermost level is seldom invalidated. Based on these
characteristics of the LSM-tree, ZenFS uses an algorithm
(called LIZA) that assigns Write Lifetime Hint Value (lifetime
hint) to each level, predicts the lifetime hint of the SSTable
according to the level to which the SSTable belongs, and
allocates a zone for the SSTable according to the lifetime
hint value. In this way, LIZA places SSTables with the same
lifetime hints in the same zone. Therefore, since data in the

same zone can be invalidated at a similar time, ZenFS can
separate valid and invalid data between zones, reducing the
overhead of copying valid data during zone cleaning.

The detailed operation process of LIZA is as follows. LIZA
has four different lifetime hint values; Short (1), Medium (2),
Long (3), and Extreme (4). For ease of explanation, we denote
integer values with them. First of all, every new SSTable
to be written is assigned a lifetime hint based on its desti-
nation level. When the destination level is Level 0 or 1, the
lifetime hint is Medium (2). For Level 2 SSTable, Long (3) is as-
signed. Similarly, Extreme (4) is assigned as the lifetime hint
for Level 3 and further. Short (1) is assigned for data other
than SSTable such as Write-Ahead Log (WAL) and Manifest
(which has summary information of the LSM-tree). In LIZA,
each zone also has a lifetime hint. It is determined by the life-
time hint of the first SSTable written to each zone. After the
lifetime hint ℎ of the SSTable is determined, LIZA searches
for the zone with the smallest lifetime hint value equal to
or greater than ℎ, then places the SSTable in that zone. If
there is no matching zone, LIZA allocates an empty zone and
sets its lifetime hint to ℎ. Note that LIZA may trigger zone
cleaning when there is no empty zone remaining.
InaccurateHotness Estimation: In a long-term view, LIZA
can place SSTables invalidated together in the same zone
since new updates will, in the end, push all data from the
upper level all the way down. However, LIZA’s long-term seg-
regation of invalidated data often fails to reduce the amount
of valid data remaining in the victim zones, which creates
high pressure for zone cleaning. Specifically, we have identi-
fied two situations in which LIZA cannot avoid, which are
as follows:
• First, SSTables having overlapping key ranges at adjacent

levels of the LSM-tree can be placed in different zones and
invalidated at the same time by compaction.

• Second, compaction can invalidate SSTables across zones
with different lifetime hint values.
Figure 2(a)&(b) describes the aforementioned two cases

that occur in LIZA as an example. Figure 2(a) shows that

95

HotStorage’22, June 27–28, 2022, Virtual Event, USA H. Lee et al.

SSTables A, B, and C are selected as compaction input, and
produce new SSTables D and E after merging. In Figure 2(b),
new SSTables are written in Zone 2 and SSTable A, B, and C
are invalidated by the compaction. When zone cleaning is
triggered right after compaction, Zone 1 is selected as victim
zone due to its high invalid ratio. Valid data copy is inevitable
since half of Zone 1 must be copied to Zone 3, which was an
empty zone previously, and then the lifetime hint for Zone 3
becomes Long as Zone 1.
Another important thing to note is that the lifetime hint

of SSTable A (Medium) and lifetime hints of SSTable B and
C (Long) are different. This means that LIZA does not avoid
compaction that occurs between lifetime hint boundaries.
Compaction across zones leads to partial invalidation in each
zone after the compaction, which in turn increases data copy
overhead during zone cleaning.

4 COMPACTION-AWARE ZONE
ALLOCATION

The most fatal limitation of LIZA we found is the lack of
design considerations for how SSTables are invalidated in
LSM-trees. Therefore, our proposal, CAZA, was designed
based on our close observation of how the compaction pro-
cess selects, merges and invalidates SSTables in the LSM
tree. As such, CAZA’s design considering the compaction
process of LSM-tree maximizes the zone cleaning efficiency
of ZenFS by consolidating SSTables with overlapping key
ranges located at different levels in the LSM-tree in the same
zone and invalidating them together during zone cleaning.
We observe that the data structure of the LSM-tree, de-

scribing how SSTables form the LSM-tree, has enough clues
to deduce possible combinations of SSTables that will be used
as compaction input and be invalidated. For example, let 𝐿
be the level of some new SSTable 𝑆 to be placed. Then, from
the data structure of the LSM-tree, we can infer (i) a set of
candidate SSTables at level 𝐿 − 1 to be merged with SSTable
𝑆 by compaction triggered at level 𝐿 − 1, and (ii) a set of
SSTables at level 𝐿 + 1 to be merged by compaction triggered
at level 𝐿 in the same way, since compaction triggered at
level 𝑖 picks SSTables having overlapping key ranges from
level 𝑖 and 𝑖 + 1. When the compaction input includes the
SSTable 𝑆 , we can easily pick all SSTables having overlapping
key ranges with 𝑆 from the adjacent lower level using the
data structure of the LSM-tree.

Based on the above observation, CAZA allocates a zone to
SSTables that are newly created after merging SSTables with
overlapping key ranges at adjacent level by considering how
compaction input is selected in the LSM-tree. Thus, CAZA
can resolve both limitations of LIZA pointed out in Section 3,
which are SSTables having overlapping key ranges in dif-
ferent zones and SSTables being invalidated across different
zones due to different lifetime hint levels.

Figure 2(c) shows an example of how the problem of LIZA
described in Figure 2(b) is solved. In Figure 2(c), all SSTa-
bles (A, B, C) with overlapping key ranges over Level 1 and
2 are placed in Zone 0 before compaction. After compaction,
SSTables A, B, and C become invalid in Zone 0 together. Af-
terwards, when zone cleaning is triggered, it picks Zone 0,
which has the highest ratio of invalid data in the zone, as the
victim zone for cleaning. Expensive copying of valid data can
be avoided because all SSTables in that zone have already
been invalidated by previous compaction.

The operation flow of CAZA is as follows.
• CAZA 1: Start with 𝐿, the target level of the new SSTable 𝑆 .

CAZA constructs a set of SSTables (𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝) by searching
level 𝐿 + 1 for SSTables that overlap the key range of the
SSTable 𝑆 .

• CAZA 2: CAZA builds a set of all zones 𝑍 containing
SSTables from 𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝 .

• CAZA 3: Then the set 𝑍 is sorted in a descending order
by the number of SSTables belonging to 𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝 .

• CAZA 4: CAZA allocates zones from 𝑍 in order.
CAZA may fail to find a zone that satisfies the conditions

in CAZA 1-4. We can consider the following two scenarios
that possibly trigger zone cleaning. ZC 1: Some SSTables
may have entirely new key ranges. In this case, CAZA allo-
cates an empty zone so that the zone can contain the new
key range. Alternatively, ZC 2: CAZA may not have enough
space to store new SSTables in all zones where SSTables with
overlapping key ranges reside. In this case, CAZA will allo-
cate a new empty zone rather than zones including disjoint
key-ranges. Otherwise, SSTables with non-overlapping key
ranges will be located in the same zone and are less likely
to be compacted together. We intentionally allocate new
empty zones for ZC 1-2, although this may potentially cause
zone cleaning. This is to leave an opportunity for the current
SSTable to be compacted together with future SSTables that
will be placed in the same new empty zone. To limit the cost
of zone cleaning by ZC, CAZA only tries to reset zones with
no valid data, and the rest of the zone cleaning procedures
are covered in Fallback. Finally, if zone cleaning fails, CAZA
will fall back to the following scenarios.
• Fallback 1: CAZA searches for an SSTable in the same

level that has the closest key ranges possible, then allocates
the zone containing the SSTable. Looking for the closest
key range gives a future SSTable in the upper (or lower)
level an opportunity to bridge nearby key ranges. For
example, SSTables with key ranges (10-20) and (25-35) can
be bridged by SSTable with (15-30) in the upper level.

• Fallback 2: CAZA falls back to LIZA for the long-term
segregation effect.

Fallback 1-2 handle the rest of the allocation that is not
covered by the above cases. In particular, zone cleaning on

96

Compaction-Aware Zone Allocation for LSM based Key-Value Store on ZNS SSDs HotStorage’22, June 27–28, 2022, Virtual Event, USA

zones with valid data will be at the end of Fallback cases.
We prioritized Fallback 1 to allow more SSTables to partici-
pate in compaction while ensuring long-term segregation of
invalidated data.

5 EVALUATION
5.1 Experimental Setup
For evaluation, we emulated a 100 GB ZNS SSD with one
hundred 1 GB sized zones in DRAM using null_blk [5]. All
experiments are carried out on a machine with Intel Xeon
E5-2640 and Linux 5.10.13. We implemented CAZA by modi-
fying ZenFS in RocksDB v6.14. CAZA adopted a greedy zone
cleaning where zones with the most invalid data are selected
to be reset. To prevent the zone cleaning from blocking, ten
zones are reserved for over-provisioning. We set the thresh-
old (THS) proportional to the total device capacity for the
zone cleaning to terminate after reclaiming a certain amount
of free space. To inspect the amount of copied data according
to the number of zone cleaning occurrences, we vary the
threshold from 5% to 25%. The threshold represents the min-
imum amount of free space zone cleaning must achieve. In
other words, the larger the threshold, the higher the pressure
for zone cleaning.
We evaluated CAZA against LIZA. To analyze the effect

of the two algorithms on zone cleaning, we used db_bench,
a micro-benchmark tool released with RocksDB. To consider
a situation where compaction is triggered frequently, we ran
the db_bench first to load 40 GB of uniformly distributed key-
value pairs (16 B key and 128 B value, uniformly distributed)
in sequential order by key, then started measuring the write
amplification overhead by randomly overwriting another
40 GB of key-value pairs within the same key range as the
load step. We set the size of MemTables and L0 SSTables to
64 MB. The size limit of levels starts with 256 MB at L0, and
it increases by ten times as level goes deeper.

5.2 Results
5.2.1 Write Amplification. To quantify the reduction of data
copy during zone cleaning by CAZA, we measured the write
amplification (WA). WA is obtained by dividing the total
amount of data written to the ZNS SSD, which includes data
copy during zone cleaning, by the total amount of writes by
LSM-tree, which only includes writes generated by the com-
paction. Figure 3 shows a comparison ofWA by zone cleaning
for LIZA and CAZA varying thresholds. In Figure 3(a), LIZA
shows a larger amount of valid data copies than CAZA. The
amount of these copies increases with more frequent invoca-
tions of zone cleaning as the threshold increases. Importantly,
the rate of increase in the amount of valid data copies of LIZA
is larger than that of CAZA. Figure 3(b) shows a comparison
of WA.

5 10 15 20 25
Threshold

0
25

50

75

100

125

150

To
ta
lC

op
ie
d
Da

ta
(G

B) LIZA CAZA

(a) Total Copied Data

5 10 15 20 25
Threshold

1.00

1.05

1.10

1.15

1.20

W
rit
e
Am

pl
ifi
ca

tio
n LIZA CAZA

(b) Write Amplification

Figure 3: WA analysis of LIZA and CAZA

[0, 0.2T) [0.2T, 0.4T) [0.4T, 0.6T) [0.6T, 0.8T) [0.8T, T)
Time (Total Execution Time = T)

0.0

0.5

1.0

In
va

lid
Ra

tio

LIZA CAZA

Figure 4: Changes in the distribution of zones according
to the ratio of invalid data. “[A, B)” shows the start time
and end time of the execution time. ‘A’ and ‘B’ are each
expressed as a ratio of the total execution time (𝑇).

CAZA shows a lower WA than LIZA for all thresholds,
and the gap becomes larger as the threshold increases. The
rate in increase of WA of LIZA is larger than that of CAZA.

5.2.2 Effect of Lifetime Segregation. If a zone allocation al-
gorithm perfectly predicts the lifetime of data and segregates
them into separate zones, every compaction will ideally only
produce fully invalidated zones. However, in practice, valid
data may remain in the zone even after the compaction. Con-
sequently, the less accurate the prediction of data lifetime by
the zone allocation algorithm, the more valid data is in the
zone. The valid data left in the zone entails the overhead of
copying valid data during zone cleaning.
To observe the change in the ratio of invalid data in the

zone over time, we measured the distribution of the invalid
ratio of zones in five equally sized time spans. We fixed the
threshold to 15% in this experiment. As shown in Figure 4,
LIZA produces a group of high invalid ratio zones to a certain
degree, but does not reach invalid ratio 1.0. The group of
zones below 1.0 continually becomes an empty zone, which
locates at the bottom of a violin plot, by zone cleaning with
the data copy. On the other hand, high invalid ratio zones in
CAZA are located higher than the LIZA’s in all time spans.
CAZA has 3.32x more zones with an invalid ratio of 1.0 and
4.2x more zones with an invalid ratio of 0.95 than LIZA. This
shows that CAZA places data invalidated at similar timing
into the same zone so that less valid data are co-located with
invalid data.

97

HotStorage’22, June 27–28, 2022, Virtual Event, USA H. Lee et al.

0 100 200 300 400
Amount of Copied Data (MB)

0.00

0.25

0.50

0.75

1.00
Pr
op
or
tio
n

LIZA (THS = 5)
LIZA (THS = 15)
LIZA (THS = 25)

CAZA (THS = 5)
CAZA (THS = 15)
CAZA (THS = 25)

(THS means Threshold)

Figure 5: Comparison of amount of data copy per zone
reset according to threshold change

To investigate whether CAZA is producing enough zones
with only invalid data (invalid ratio of 1.0), we collected
the amount of valid data copy from every zone reset with
different thresholds (5, 15, 25). As shown in Figure 5, 91%
of zone resets in CAZA do not require any valid data copy
when the threshold is 5. This is because CAZA was able
to precisely segregate data with the same lifetime, and the
greedy zone cleaning algorithm mostly selects the zones
with an invalid ratio of 1.0 as victims. On the other hand,
LIZA selects victim zones with an invalid ratio of 1.0 for
only 76% of zone resets. This difference deteriorates as the
threshold gets larger. When the threshold is 25, only 25% of
victim zones have no valid data in LIZA, compared to 67% in
CAZA. This trend in the difference in total data copy is also
shown as the write amplification reduction in Figure 3.

5.2.3 Impact of Compaction-Awareness. From Figure 4 and
Figure 5, we observe that CAZA can effectively reduce the
data copy during zone cleaning by producing zones with a
high invalid ratio. To investigate the cause of zones with a
higher invalid ratio in CAZA, we evaluated the impact of
Compaction-Awareness in two respects. First is the number
of zones that the compaction invalidated. Consider the case
where a single compaction invalidates a set of SSTables. If
CAZA successfully predicted SSTables that belongs to the
set, invalidated SSTables would be across a smaller num-
ber of zones compared to the LIZA. In other words, CAZA
contributed to compaction to produce a small number of
zones with a high invalid ratio rather than a large number
of Second is the size of invalidated data in a single zone by
a single compaction. If more data are simultaneously inval-
idated in a zone after the compaction, it means that CAZA
again successfully predicted and placed the input SSTables
of the compaction into the a single zone.

As shown in Figure 6(a),CAZA places the SSTables deleted
by a single compaction across three different zones, whereas
LIZA places them in 3.8 zones. A lower value means that
SSTables are more accurately grouped together in the same
zones based on their lifetimes. Figure 6(b) shows the average
amount of data invalidated together in a zone by a single
compaction. While CAZA leads to 83MB invalidated, LIZA
shows lower invalidation per zone as 74MB.

5 10 15 20 25
Threshold

0

1

2

3

4

5

Av
er
ag

e
N
um

be
ro

fZ
on

es LIZA CAZA

(a) Number of Zones

5 10 15 20 25
Threshold

0

20

40

60

80

100

In
va

lid
at
ed

Da
ta

(M
B) LIZA CAZA

(b) Invalidated Data

Figure 6: Impact of compaction-awareness

Table 1: Performance evaluation with db_bench
Throughput (MB/s) Latency (𝜇𝑠)

THS LIZA CAZA LIZA CAZA
5 43.4 42 12.65 13.03
10 43.1 42.2 12.75 13.00
15 42.4 41.9 12.96 13.12
20 41.2 42 13.36 13.01
25 40 41.4 13.74 13.27

5.2.4 Performance. Lastly, we evaluated the CAZA’s perfor-
mance overhead. To this end, we measured average through-
put and latency with db_bench for each experimental setup.
For a fair comparison, all experiments started measurements
after the initial loading phase when the DB was sufficiently
populated. In Table 1, CAZA shows negligible performance
difference from LIZA, despite significantly reducing writes
during zone cleaning. We suspect that this insignificant per-
formance difference is because (i) we use DRAM-emulated
ZNS without considering the NAND latency of ZNS, and
(ii) the implementation overhead for CAZA greatly affects
DRAM-emulated ZNS. However, if an actual ZNS device is
used, it is expected that CAZA will outperform LIZA.

6 CONCLUSION
This paper proposes Compaction-Aware Zone Allocation
(CAZA) for the LSM-tree on ZNS SSD. CAZA is carefully
designed considering the fact that SSTables are invalidated
simultaneously when used as the compaction input together.
CAZA effectively segregates SSTables by lifetime, minimiz-
ing write amplification overhead during zone cleaning. Ex-
tensive evaluation has shown that CAZA reduces write am-
plification by up to 7.4% compared to ZenFS’s state-of-the
art zone allocation algorithm, LIZA.

ACKNOWLEDGMENTS
We would like to thank our shepherd, Angelos Bilas, for his
feedback. This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea gov-
ernment(MSIT)(No. NRF-2021R1A2C2014386). Y. Kim is the
corresponding author.

98

Compaction-Aware Zone Allocation for LSM based Key-Value Store on ZNS SSDs HotStorage’22, June 27–28, 2022, Virtual Event, USA

REFERENCES
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark

Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD Per-
formance. In Proceedings of the USENIX Annual Technical Conference
(ATC ’08). 57–70.

[2] Matias Bjørling. 2019. From Open-channel SSDs to Zoned Namespaces.
In Linux Storage and Filesystems Conference (Vault ’19), Vol. 1.

[3] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In Proceed-
ings of the USENIX Annual Technical Conference (ATC ’21). 689–703.

[4] Gunhee Choi, Kwanghee Lee, Myunghoon Oh, Jongmoo Choi,
Jhuyeong Jhin, and Yongseok Oh. 2020. A New LSM-style Garbage
Collection Scheme for ZNS SSDs. In Proceedings of the 12th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage ’20).

[5] Western Digital Corporation. 2021. nullbk. https://zonedstorage.io/
docs/getting-started/nullblk

[6] Western Digital Corporation. 2022. ZenFS. https://github.com/
westerndigitalcorporation/zenfs

[7] Western Digital Corporation. 2022. Zoned Stroage. https://
zonedstorage.io/docs/introduction/zoned-storage

[8] Facebook. 2022. RocksDB. https://github.com/facebook/rocksdb
[9] Google. 2021. LevelDB. https://github.com/google/leveldb
[10] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang.

2021. ZNS+: Advanced Zoned Namespace Interface for Supporting
In-Storage Zone Compaction. In Proceedings of the 15th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI ’21).
147–162.

[11] Hans Holmberg. 2020. ZenFS, Zones and RocksDB - Who Likes to
Take out the Garbage Anyway? https://snia.org/sites/default/files/
SDC/2020/074-Holmberg-ZenFS-Zones-and-RocksDB.pdf

[12] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and
Roman Pletka. 2009. Write Amplification Analysis in Flash-based
Solid State Drives. In Proceedings of the ACM International Systems and
Storage ConferenceS (SYSTOR ’09). 1–9.

[13] MongoDB Inc. 2022. MongoDB. https://github.com/mongodb/mongo
[14] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho.

2015. F2FS: A New File System for Flash Storage. In Proceedings of the
13th USENIX Conference on File and Storage Technologies (FAST ’15).
273–286.

[15] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-Structured Merge-Tree (LSM-tree). Acta Informatica 33,
4 (1996), 351–385.

[16] Reza Salkhordeh, Kevin Kremer, Lars Nagel, Dennis Maisenbacher,
Hans Holmberg, Matias Bjørling, and André Brinkmann. 2021. Con-
stant Time Garbage Collection in SSDs. In Proceedings of the IEEE
International Conference on Networking, Architecture and Storage (NAS
’21). 1–9.

[17] Theano Stavrinos, Daniel S Berger, Ethan Katz-Bassett, and Wyatt
Lloyd. 2021. Don’t be a blockhead: Zoned namespaces make work
on conventional SSDs obsolete. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS ’21). 144–151.

[18] Qiuping Wang, Jinhong Li, Patrick PC Lee, Tao Ouyang, Chao Shi,
and Lilong Huang. 2022. Separating Data via Block Invalidation Time
Inference for Write Amplification Reduction in Log-Structured Stor-
age. In Proceedings of the 20th USENIX Conference on File and Storage
Technologies (FAST ’22). 429–443.

[19] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Andrew A Chien, and Haryadi S Gunawi. 2017.
Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail
Latencies in NAND SSDs. ACM Transactions on Storage (TOS) 13, 3
(2017), 1–26.

99

https://zonedstorage.io/docs/getting-started/nullblk
https://zonedstorage.io/docs/getting-started/nullblk
https://github.com/westerndigitalcorporation/zenfs
https://github.com/westerndigitalcorporation/zenfs
https://zonedstorage.io/docs/introduction/zoned-storage
https://zonedstorage.io/docs/introduction/zoned-storage
https://github.com/facebook/rocksdb
https://github.com/google/leveldb
https://snia.org/sites/default/files/SDC/2020/074-Holmberg-ZenFS-Zones-and-RocksDB.pdf
https://snia.org/sites/default/files/SDC/2020/074-Holmberg-ZenFS-Zones-and-RocksDB.pdf
https://github.com/mongodb/mongo

	Abstract
	1 Introduction
	2 Background
	2.1 Zone Namespace SSD
	2.2 Log-Structured Merge-Tree
	2.3 ZenFS

	3 Zone Allocation in ZenFS
	4 Compaction-Aware Zone Allocation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

