
A Principled Approach for Selecting Block I/O Traces
Omkar Desai

Syracuse University
odesai@syr.edu

Seungmin Shin
Soongsil University

seungminshin2@gmail.com

Eunji Lee
Soongsil University
ejlee@ssu.ac.kr

Bryan S. Kim
Syracuse University
bkim01@syr.edu

ABSTRACT

We present IOTap, a tool that analyzes and profiles block I/O
traces. IOTap computes the (dis)similarities among a set of
workloads and sets a guideline for selecting a subset of traces
for benchmarking. By doing so, we avoid experimentally
running all workloads or, even worse, arbitrarily selecting a
subset that skews the results. We demonstrate the usefulness
of IOTap by comparing its results with experiments on real
SSDs, achieving a high correlation of 0.92 for an NVMe SSD.

CCS CONCEPTS

• Mathematics of computing → Dimensionality reduc-
tion; • Computing methodologies → Principal component
analysis; • Information systems→ Flash memory.

KEYWORDS

Workload analysis
ACM Reference Format:

Omkar Desai, Seungmin Shin, Eunji Lee, and Bryan S. Kim. 2022. A
Principled Approach for Selecting Block I/O Traces. In 14th ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage ’22),
June 27–28, 2022, Virtual Event, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3538643.3539754

1 INTRODUCTION

Selecting I/O traces to benchmark a storage is not an easy
task. Although the Storage Networking Industry Association
(SNIA) hosts a wide variety of workload traces [19], it is
often unclear which workloads to run for evaluation. Table 1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539754

Table 1: Size and length of recent SNIAworkload traces.

Suite # of files # of I/Os Total time

YCSB+RocksDB [21] 27 352 M 0.4 Days
Virtual desktop [11] 2694 4.3 B 103.3 days

Slacker [7] 57 274.2 k 13.9 mins
Nexus [22] 31 410.2 k 23.3 mins

MS Production [10] 297 1 B 120 Days
MS Enterprise [9] 116 2.6 B 120 Days

MSR Cambridge [14] 36 434 M 8 Days
Total 3258 8.7 B 441 Days

shows a summary of the most recent set of block I/O traces
available from IOTTA SNIA [19]. I/O traces are replayed
faithfully to their timestamps if performance characteristics
such as I/O latency need to be measured accurately, and
it would take over a year to replay all of them, making it
both intractable and wasteful. On the other hand, arbitrarily
choosing a small set of workloads for testing may result in a
bias and lack the coverage of the full spectrum of I/O.

This arbitrary selection of workloads from a huge set can
lead to a benchmarking crime if it does not provide a justified
reason for the selection [8]. Providing this justification is
often difficult when there are too many files to select from
(in the case of VDI trace [11]), or when they are too old but
there is no a better alternative for that domain (in the case
of MS Production traces [10]). Moreover, although we can
rely on expert knowledge to select proper workload traces
fit for the specific target system, we believe that evaluating a
storage system under a diverse set of workloads will become
increasingly relevant due to storage virtualization, workload
colocation, and workload heterogeneity. Thus, we, the stor-
age research community, need an analytical toolchain that
selects a subset of I/O traces based on a principled approach.

We present IOTap, a tool that extracts important features
from traces and computes (dis)similarities among them to
provide a guideline for selecting traces when benchmarking
storage systems1. The three main advantages of using our
tool are as follows. First, IOTap is unbiased, analytically

1Our tool is available at https://github.com/swiftomkar/IOTap

52

https://doi.org/10.1145/3538643.3539754
https://doi.org/10.1145/3538643.3539754
https://github.com/swiftomkar/IOTap

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Omkar Desai, Seungmin Shin, Eunji Lee, and Bryan S. Kim

Figure 1:Workflow of IOTap. It (1) extracts 253 features from each trace, (2) reduces its dimensionality through PCA (Principal

Component Analysis), (3) computes the (dis)similarity between traces based on their distance in the PC dimension, and (4) sets

forth a guideline for selecting traces.

computing the trace characteristics rather than empirically
measuring how the trace performs, and using this informa-
tion to sample a subset of workloads with the broadest cover-
age. Second, it is fast, only needing a single scan of the trace
file to extract all of its features, and using a fast and efficient
principal component analysis (PCA) [6] to understand the
key differences among traces. Third, it is accurate, achieving
a high correlation of 0.92 when compared to experimental
results on real storage devices.

To validate our tool, we replay and measure 16 trace files
among the 3258 trace files available on SNIA [19]. (We cannot
replay and measure all traces as this would take over a year
to complete.) We hypothesize that two analytically similar
traces would exhibit similar behavior when exercised on a
real storage device. We use I/O latencies as measurable be-
havior, and demonstrate that our hypothesis holds true. Thus,
if IOTap analyzes two traces to be similar, benchmarking
them would not only be redundant, but also accentuate the
particular characteristics of the traces, skewing the overall
evaluation. We hope that IOTap can be used for unbiasedly
selecting I/O traces for a fair evaluation of storage systems.

2 RELATEDWORKS

Table 2 shows a high-level overview of recent related works
that analyze, classify, or characterize traces. In particular, we
briefly outline the works by Tarasov et al. [20] and Basak et
al. [4], as they have been validated empirically. Tarasov et

Table 2: Summary of Related Works.

Statistical
analysis

Empirical
validation

Guideline for
selecting traces

Chen et al. [5] ✓ ✗ ✗

Tarasov et al. [20] ✗ ✓ ✗

Li et al. [12] ✓ ✗ ✗

Basak et al. [4] ✓ ✓ ✗

Zhou et al. [23] ✓ ✗ ✗

This work (IOTap) ✓ ✓ ✓

al. [20] bin each I/O into a multi-dimensional feature matrix
based on its operation type and I/O size, and use these feature
matrices to build a flexible replayable model for generating
representative synthetic counterparts. On the other hand,
the work done by Basak et al. [4] measures latencies and
workload parameters in fixed intervals and uses both CART
(classification and regression tree) and hierarchical clustering
to extract the workload signature; these workload signatures
are used to determine if workloads can be colocated.
We faithfully implement the two designs and examine if

they can be effective in identifying (dis)similar traces. How-
ever, we identify the following three deficiencies. First, the
prior approach can be very slow. In particular, we find that
the signature extraction method is too slow, making it in-
feasible to analyze large traces. Second, if the trace does not
include latencies, the signature extraction method does not
work. Lastly, they are not accurate in matching analytical
results with experimental measurements. We show more
details to these results in Section § 5.

3 IOTAP: I/O TRACE ANALYSIS AND

PROFILING

We consider the following criteria when designing IOTap.
• The tool should neither require performance measurement
to classify its characteristics nor depend on the system
hardware on which the traces were collected.

• The tool should be fast, only requiring a single pass for
each trace, and its analysis time should scale at most lin-
early with the number of I/O traces analyzed.

• The tool should holistically consider all aspects of the trace
as a continuous spectrum of values, rather than binning
and discretizing them according to arbitrary thresholds.
In meeting these design criteria, our work processes all

traces according to the workflow described in Figure 1. First,
it extracts 253 features that capture the distributions of I/O
type, inter-arrival distance, size, and skew. Second, it uses
PCA (Principal Component Analysis) [6] to reduce the num-
ber of dimensions that characterize the workload, from 253
features to 40 PCs (Principal Components). Third, based on

53

A Principled Approach for Selecting Block I/O Traces HotStorage ’22, June 27–28, 2022, Virtual Event, USA

Table 3: Trace attributes and features.

Attribute
group Description Number of

attributes
Number of
features

I/O type Read-write ratio, I/O
change probabilities 5 55

I/O size I/O size,
data transfer rate 6 66

Inter-arrival
distance

Root-mean-square
of distances 3 33

Skew
Portion of data

transferred in top
most accessed blocks

9 99

Total 23 253

the PC coordinates of each trace, it computes the distance
between two traces, which represents how similar (if close)
or dissimilar (if far) the points are. Lastly, it provides a guide-
line for selecting a subset of traces for benchmarking based
on the location and inter-distance among traces.

Table 3 outlines the 23 attributes and 253 features extracted
from a trace. Each attribute consists of 11 features that de-
scribe its distribution and dynamics. The first feature of an
attribute is the average value across the entire trace. For
example, the 𝐼/𝑂𝑠𝑖𝑧𝑒𝑒𝑛𝑡𝑖𝑟𝑒𝑎𝑣𝑔 is a feature, representing the av-
erage I/O size across the entire trace. The next 5 features are
the minimum, first quartile, median, third quartile, and the
maximum values when the trace is chunked into 1-minute
intervals. For example, 𝐼/𝑂𝑠𝑖𝑧𝑒1𝑚𝑖𝑛

𝑚𝑎𝑥 is the maximum value of
the average I/O size among the 1-minute intervals in a trace.
The last 5 features are the same 5 distributions but for 1-
second intervals. By including distribution information from
multiple chunk sizes, we describe both the second-scale and
the minute-scale dynamics of the workload. In addition, ex-
tracting these features uses amovingwindowwhen scanning
the trace file and does not require latency measurements.
Inspired by the approach in the architecture community

to analyze CPU workloads [15, 16], we use PCA to distill the
most important characteristics among the 253 features. In
essence, PCA reduces the dimensionality of a dataset, trans-
forming the 253 features into 40 PCs where each PC is some
combination of the original features. Each PC maximizes
the variance from the data, and 40 PCs collectively capture
93.79% of the original data’s variance. This process accentu-
ates the differences among the traces, and similar features are
made less important. PCA is relatively fast and efficient, only
taking several seconds to analyze a matrix of 3258 (number
of traces) by 253 (number of features).
Figure 2 projects the location of all 3258 traces from Ta-

ble 1 onto the two most important PC dimensions, capturing

Figure 2: Two-dimensional projection on the PCA of all 3258

traces from Table 1, capturing the top 32.31% of the variance.

Trace suites such asMSProduction [10] andMSEnterprise [9]

consists of amore diverse set of workloads compared to those

such as Slacker [7] and YCSB+RocksDB [21].

the top 32.31% of the variance. Projection onto the other 38
dimensions is not shown for brevity. All the YCSB+RocksDB
traces [21] are tightly clustered together as they represent
the same workload chopped into different files. Similarly, the
VDI traces [11], all from the same virtual desktop workload
captured in the span of 28 days, are concentrated on a rela-
tively smaller corner of the map, despite having nearly 2700
traces (82.7% of all trace files). In contrast, the MS Produc-
tion traces [10] cover a wider range of I/O characteristics,
spread across the 2D plot. These analytical results are con-
sistent with our expectation as YCSB+RocksDB traces and
VDI traces are trace segments while MS Production traces
are independent traces.

Table 4 lists the top 5 important features analyzed through
PCA. A single feature may be part of multiple PCs, thus we
show the total contribution across all PCs. The feature that
discerns traces the most is the root-mean-square (RMS) of
distances between two consecutive read I/Os. This feature
reflects upon the sequentiality of a workload; sequential
workloads have small RMS distances while random ones
have large distances. The second important feature is the
first quarter (Q1) for bytes read per second in 1-minute in-
tervals. This captures the burstiness of a workload; even if
two workloads have similar data transfer rates on average,
a bursty workload would have a smaller Q1, while uniform
workloads would have Q1 values similar to the median.

We consider the distance between two points on the 40-PC
dimension to be the degree of dissimilarity. That is, if two
points are close, they are similar, while if far, dissimilar. We
use the Manhattan distance (L1 norm) for this purpose, and
use the variance captured for each PC as the weight. We
show in Section §5 that these distances correlate well with
latency measurements.

54

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Omkar Desai, Seungmin Shin, Eunji Lee, and Bryan S. Kim

Table 4: Top 5 important features according to PCA

Attribute Features Contribution (%)
RMS of distance

between consecutive
reads (RRMS)

𝑅𝑅𝑀𝑆𝑒𝑛𝑡𝑖𝑟𝑒𝑎𝑣𝑔 5.3

Bytes read
per second (BRPS) 𝐵𝑅𝑃𝑆1𝑚𝑖𝑛

𝑞1 4.7

Probability of write
after read I/O (WAR) 𝑊𝐴𝑅1𝑠𝑒𝑐

𝑞2 3.35

Portion of data
transferred in top

10% hot blocks (10HOT)
10𝐻𝑂𝑇 1𝑚𝑖𝑛

𝑞1 2.76

Probability of read
after write I/O (RAW) 𝑅𝐴𝑊 1𝑠𝑒𝑐

𝑚𝑎𝑥 2.54

4 EXPERIMENTAL METHODOLOGY

To test our hypothesis that two analytically similar traces
would also be similar empirically, we replay the traces and
measure the latencies on real SSDs. We use a primary perfor-
mance metric such as I/O latencies for validation, but other
metrics such as throughput and SSD-internal write amplifi-
cation can also be considered. We leave the investigation of
correlating our analysis with these other metrics as future
work. In addition, we do not run all 3258 traces (which would
take over a year), but arbitrarily choose 16 trace files. By do-
ing so, we, unfortunately, commit a benchmarking crime of
subsetting workloads. However, we cannot use our own tool
to select traces for validation as it creates a cyclic dependency.
We plan to continue experimentally replaying the remainder
of the traces and make the validation results available at our
tool repository (https://github.com/swiftomkar/IOTap).

Figure 3 illustrates the workflow for the experiments. For
replaying traces, we use btreplay [3] which takes in a binary
blktrace file as input. To create this binary file, we develop
blkunparse which converts I/O trace in text format into a
btreplay-compatible input. As the traces are replayed, the
I/O latencies are measured using the blktrace [2] tool.

Figure 3: Replaying andmeasuring latencies of I/O traces for

empirical validation: (1) blkunparse converts the block I/O

in text format into a replayable binary format, (2) btreplay
replays the trace binary with an acceleration factor on a test

device, (3) and blktracemeasures the latencies.

Table 5: Traces replayed.

Trace file Trace suite Acceleration Label

2016022212-LUN3 VDI 13 VD3
2016022314-LUN0 VDI 10 VD0

Cassandra Slacker 51 SLC
Elasticsearch Slacker 95 SLE

Email Nexus 189 N5E
Exchange 2:39 PM MS Enterprise 12 ME2

Messaging Nexus 262 N5M
Mysql Slacker 116 SLM

Radius 2:43 PM MS Production 80 MP2
Radius SQL 10:05 AM MS Production 15 MP10

Sonarqube Slacker 60 SLS
SSDTrace-00 YCSB+RocksDB 1 YR0
SSDTrace-06 YCSB+RocksDB 1 YR6
SSDTrace-08 YCSB+RocksDB 1 YR8
TPCC 4:01PM MS Enterprise 0.2 ME4
TPCC 9:43 AM MS Enterprise 0.2 ME9

However, there is a fundamental issue of hardware dif-
ference between the one where the trace was collected and
where the trace is replayed. For example, replaying a data-
intensive workload from a storage array onto a hard disk
drive would overwhelm the single drive. The other case of
replaying a trace from a mobile environment is also prob-
lematic. Although there have been studies for downscaling
traces [17], there is no general-purpose solution for match-
ing hardware differences. For our work, we extrapolated the
target IOPS based on the read-write ratio and average I/O
size of the trace, and the performance specification of the
storage drives used. Thus, we use different trace acceleration
factors depending on the replayed trace and the SSD used, as
shown in Table 5. The labels abbreviate the long trace names
for Figure 4a.

5 EVALUATION RESULTS

In this section, we present the accuracy of our analytical
method by comparing it against the measured performance
of traces in Table 5. We measure the latency with blktrace
and use the Kolmogorov-Smirnov test to quantify the sim-
ilarity between two one-dimensional cumulative distribu-
tions on latencies. The empirically measured similarity is
compared with the analytical similarity computed using the
Manhattan distance of two traces on the PCA dimensions.We
use Manhattan distance from among several distance func-
tions as it is effective at computing (dis)similarities between
high dimensional data points [1]. Prior to each experiment,
SSDs are pre-conditioned [18] through 2 full-drive sequential
writes followed by 2 full-drive random writes.

Figure 4 illustrates the similarity matrix (Figure 4a) and
correlation (Figure 4b) between the analytical and empirical

55

https://github.com/swiftomkar/IOTap

A Principled Approach for Selecting Block I/O Traces HotStorage ’22, June 27–28, 2022, Virtual Event, USA

(a) Similarity matrix.

(b) Correlation between analyti-

cal and empirical results.

Figure 4: Figure 4a shows the similarity matrices between

analytical (upper-right triangle in gray) and empirical (lower-

left triangle in blue). Lighter shades indicate higher similar-

ity, while the darker the more dissimilar. A greater degree

of diagonal mirroring means a higher correlation between

the analytical and empirical results. Figure 4b plots the cor-

relation between analytical and empirical similarity. Each

point represents a pairwise comparison between two distinct

traces in Table 5. The correlation coefficient is 0.92.

results. In Figure 4a, the degree of similarity is represented
by the shade of the blues and grays. The lighter the shade, the
more similar the two corresponding traces are. The analytical
similarity computed using the Manhattan distance of two
points from PCA is on the upper-right, while the empirical
similarity quantified by the Kolmogorov-Smirnov test of the
latency distributions of the two traces is on the lower-left.
The similarity matrix shows a high degree of mirroring along
the diagonal, indicating that our analytical approachmatches
with the measured results, confirming our hypothesis.

For Figure 4b, each point on the graph is a pair of two
distinct traces, and its 𝑥-coordinate is the empirical similar-
ity between their latency distributions, and the 𝑦-coordinate
is its analytical similarity computed by the distance in the
PCA. We observe a high correlation coefficient of 0.92. The
outliers are comparisons between MS Enterprise (collected
on a storage server) and Nexus (collected on a mobile phone).
The locations of these outliers relative to the regression line
indicate that the analytical method perceives the difference
between the two trace suites to be greater than the mea-
sured latency distributions. We interpret this to be caused by
the performance ceiling of the drive, limiting the measured
difference between the two trace suites.
Compared with prior methods in analyzing I/O traces,

IOTap is both faster and more accurate, as shown in Fig-
ure 5. Figure 5a plots the runtime of the signature extraction
method based on CART [4] that shows the infeasibility of
using this method on long traces. However, our approach
only takes 1.4 hours to analyze all the traces together, even

(a) Runtime of the signa-

ture extraction method

(b) Accuracy of the feature

matrix method

Figure 5: Performance and accuracy of prior methods. Fig-

ure 5a plots the trace processing time for the signature ex-

traction method [4]. The measured processing time (in bold

×) for the Slacker, Nexus, and YCSB+RocksDB traces are 0.6,

1, and 24 hours, respectively. On the other hand, IOTap only

takes 1.4 hours to extract features from all 3258 traces to-

gether. Figure 5b shows the correlation between the empiri-

cally measured similarity and the analytical similarity using

the feature matrix method [20]. The two do not correlate

well, with a correlation coefficient of -0.19.

faster than the 24 hours for the signature extraction method
to analyze only the YCSB+RocksDB traces. We are unable
to compare the accuracy of this approach due to it requiring
measured latencies for analysis. On the other hand, Figure 5b
shows the accuracy of the featurematrixmethod [20]2. In this
approach, we (1) extract feature matrices for every 10-second
interval in the traces, (2) cluster all the feature matrices to
group similar ones into a single signature, and (3) compute
the Jaccard similarity between two traces that are expressed
as a set of signatures. The analyzed similarity using this
feature matrix approach does not correlate well with the
empirical measurements.

6 TRACE SAMPLING

Based on the analysis of all the traces, IOTap provides a
guideline for selecting I/O traces for evaluation. Once the
traces are placed in the principal component dimensions
through PCA, we can sample a subset of traces from all
available traces. For this, we use 𝑘-means clustering [13] on
the traces from the PCA, where 𝑘 is the number of traces to
sample, and select a trace that is centrally located within each
cluster. 𝑘-means is chosen after exploring several clustering
techniques as it allows us to specify 𝑘 and sample traces
without ignoring the outliers while also scaling to large data
sets in PC dimensions [13].

2The feature matrix is an intermediary byproduct for Tarasov et al. [20]
that generates synthetic traces based on analysis. Similarity analysis is not
the main purpose of that work, but we use their approach for evaluation.

56

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Omkar Desai, Seungmin Shin, Eunji Lee, and Bryan S. Kim

Table 6: Example of sampling traces using 𝑘-means

clustering with 𝑘=5.

Trace file Read Ratio Bandwidth Avg. I/O size
VDI

2016031413-LUN3 0.86 27.4MB/s 32.9KB

VDI
2016031415-LUN2 0.59 5.5MB/s 18.6KB

MS Production
Display Ads 6:11 AM 0.53 835KB/s 75.4KB

MS Production
Display Ads 7:06 AM 0.92 600KB/s 30.5KB

MS Enterprise
TPCC 10:02 AM 0.62 1.3GB/s 8.7KB

Coverage (1-KS) 0.85 0.80 0.80

Table 7: Example of sampling traces using 𝑘-means

clustering with 𝑘=12.

Trace file Read Ratio Bandwidth Avg. I/O size
VDI

2016022508-LUN6 0.82 9.6MB/s 17.1KB

VDI
2016030821-LUN4 0.99 361.6KB/s 5.6KB

VDI
2016031516-LUN1 0.52 3.6MB/s 17.8KB

VDI
2016031611-LUN2 0.66 21.2MB/s 25.6KB

VDI
2016031807-LUN3 0.90 23MB/s 31.2KB

MS Production
Build Server 12:13 AM 0.66 18MB/s 32.7KB

MS Production
Build Server 1:44 AM 0.60 21MB/s 52.6KB

Slacker
Crate 0.95 4.1MB/s 18.9KB

MS Production
Display Ads 12:43 PM 0.66 1.5MB/s 92.5KB

MS Enterprise
Exchange 4:25 PM 0.77 10.6MB/s 15.7KB

Nexus
Music FaceBook 0.87 224.3KB/s 12.9KB

MS Enterprise
TPCC 9:37 AM 0.62 1.3GB/s 8.7KB

Coverage (1-KS) 0.89 0.89 0.88

Table 6 and Table 7 show two examples of sampling, using
𝑘 = 5 and 𝑘 = 12 respectively. To understand how repre-
sentative our sampling is, we compute the coverage of the
sampled subset in relation to the entire set with respect to
the read ratio, bandwidth, and average I/O size. More specifi-
cally, we use the Kolmogorov-Smirnov (K-S) test to compare
how similar the two distributions (sampled subset and total
set) are. Even only with 5, the sample covers at least 80%
of the total traces across the three attributes. The samples
in Table 6 and Table 7 only serve as illustrative examples,
and the coverage for other workload characteristics such as
skewness that may be of interest for understanding cache
hit rates may be different.

7 CONCLUSION

We propose a principled approach to benchmarking with
block I/O traces through IOTap, a tool that computes the
(dis)similarities among traces and provides an unbiased
guideline for selecting a subset. Our analytical approach
correlates well with latency measurements on real SSDs, vali-
dating the usefulness of our approach.We leave the following
two directions for future work. First, we plan to further inves-
tigate trace replay methods that address hardware disparity
between trace collection and trace replay. Second, we plan
to correlate our analytical results with other empirical mea-
surements such as throughput and SSD write amplification
to validate that our methods extend beyond I/O latencies.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Gala Yadgar, our
shepherd, for all their constructive and helpful comments.
This work was supported in part by the Samsung Memory
Solutions Lab, the National Science Foundation award CNS-
2008453, and the National Research Foundation of Korea
award 2019R1A2C1090337.

REFERENCES

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. 2001.
On the Surprising Behavior of Distance Metrics in High Dimensional
Spaces. In International Conference Database Theory (ICDT). Springer,
420–434. https://doi.org/10.1007/3-540-44503-X_27.

[2] Jens Axboe, Alan D. Brunelle, and Nathan Scott. 2021. blktrace. https:
//git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/.

[3] Jens Axboe, Alan D. Brunelle, and Nathan Scott. 2021. btre-
play. https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.
git/tree/btreplay.

[4] Jayanta Basak, Kushal Wadhwani, and Kaladhar Voruganti. 2016. Stor-
age Workload Identification. ACM Transactions on Storage 12, 3 (2016),
14:1–14:30. https://doi.org/10.1145/2818716.

[5] Yanpei Chen, Kiran Srinivasan, Garth R. Goodson, and Randy H. Katz.
2011. Design implications for enterprise storage systems via multi-
dimensional trace analysis. In ACM Symposium on Operating Systems
Principles (SOSP). 43–56. https://doi.org/10.1145/2043556.2043562.

57

https://doi.org/10.1007/3-540-44503-X_27
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/tree/btreplay
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/tree/btreplay
https://doi.org/10.1145/2818716
https://doi.org/10.1145/2043556.2043562

A Principled Approach for Selecting Block I/O Traces HotStorage ’22, June 27–28, 2022, Virtual Event, USA

[6] Karl Pearson F.R.S. 1901. LIII. On lines and planes of closest fit to
systems of points in space. The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science 2, 11 (1901), 559–572.

[7] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. Slacker: Fast Distribution with
Lazy Docker Containers. In USENIX Conference on File and Storage
Technologies (FAST). 181–195. https://www.usenix.org/conference/
fast16/technical-sessions/presentation/harter.

[8] Gernot Heiser. 2021. Systems Benchmarking Crimes. https://www.cse.
unsw.edu.au/~gernot/benchmarking-crimes.html.

[9] Swaroop Kavalanekar and Bruce Worthington. 2008. Microsoft En-
terprise Traces (SNIA IOTTA Trace Set 130). In SNIA IOTTA Trace
Repository. Storage Networking Industry Association. http://iotta.snia.
org/traces/block-io?only=130.

[10] Swaroop Kavalanekar, Bruce L. Worthington, Qi Zhang, and Vishal
Sharda. 2008. Characterization of storage workload traces from produc-
tion Windows Servers. In IEEE International Symposium on Workload
Characterization (IISWC). 119–128. https://doi.org/10.1109/IISWC.2008.
4636097.

[11] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo,
Naoto Fukumoto, and Mariko Sugawara. 2017. Understanding storage
traffic characteristics on enterprise virtual desktop infrastructure. In
ACM International Systems and Storage Conference (SYSTOR). 13:1–
13:11. https://doi.org/10.1145/3078468.3078479.

[12] Cheng Li, Philip Shilane, Fred Douglis, Darren Sawyer, and Hy-
ong Shim. 2014. Assert(!Defined(Sequential I/O)). In USENIX
Workshop on Hot Topics in Storage and File Systems (HotStor-
age). https://www.usenix.org/conference/hotstorage14/workshop-
program/presentation/li_cheng.

[13] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions
on Information Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/
TIT.1982.1056489

[14] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2007.
MSR Cambridge Traces (SNIA IOTTA Trace Set 388). In SNIA IOTTA
Trace Repository. Storage Networking Industry Association. http:

//iotta.snia.org/traces/block-io?only=388.
[15] Reena Panda and Lizy Kurian John. 2014. Data analytics workloads:

Characterization and similarity analysis. In IEEE International Per-
formance Computing and Communications Conference (IPCCC). 1–9.
https://doi.org/10.1109/PCCC.2014.7017065.

[16] Reena Panda, Shuang Song, Joseph Dean, and Lizy K. John. 2018. Wait
of a Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?.
In IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). 271–282. https://doi.org/10.1109/HPCA.2018.00032.

[17] Sultan Mahmud Sajal, Rubaba Hasan, Timothy Zhu, Bhuvan Ur-
gaonkar, and Siddhartha Sen. 2021. TraceSplitter: A New Paradigm
for Downscaling Traces. In European Conference on Computer Systems
(EuroSys). https://doi.org/10.1145/3447786.3456262.

[18] SNIA. 2020. Solid State Storage (SSS) Performance Test Specifica-
tion (PTS) Enterprise. https://www.snia.org/tech_activities/standards/
curr_standards/pts.

[19] SNIA. 2021. Block I/O Traces. http://iotta.snia.org/traces/block-io.
[20] Vasily Tarasov, Santhosh Kumar, Jack Ma, Dean Hildebrand,

Anna Povzner, Geoff Kuenning, and Erez Zadok. 2012. Ex-
tracting flexible, replayable models from large block traces. In
USENIX conference on File and Storage Technologies (FAST). 22:1–
22:9. https://www.usenix.org/conference/fast12/extracting-flexible-
replayable-models-large-block-traces-0.

[21] Gala Yadgar, Moshe Gabel, Shehbaz Jaffer, and Bianca Schroeder.
2021. SSD-based Workload Characteristics and Their Performance
Implications. ACM Transactions on Storage 17, 1 (2021), 8:1–8:26.
https://doi.org/10.1145/3423137.

[22] Deng Zhou,Wen Pan,WeiWang, and Tao Xie. 2015. I/O Characteristics
of Smartphone Applications and Their Implications for eMMC Design.
In IEEE International Symposium onWorkload Characterization (IISWC).
12–21. https://doi.org/10.1109/IISWC.2015.8.

[23] Jiang Zhou, Dong Dai, Yu Mao, Xin Chen, Yu Zhuang, and Yong Chen.
2018. I/O Characteristics Discovery in Cloud Storage Systems. In
IEEE International Conference on Cloud Computing (CLOUD). 170–177.
https://doi.org/10.1109/CLOUD.2018.00029.

58

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
http://iotta.snia.org/traces/block-io?only=130
http://iotta.snia.org/traces/block-io?only=130
https://doi.org/10.1109/IISWC.2008.4636097
https://doi.org/10.1109/IISWC.2008.4636097
https://doi.org/10.1145/3078468.3078479
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/li_cheng
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/li_cheng
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
http://iotta.snia.org/traces/block-io?only=388
http://iotta.snia.org/traces/block-io?only=388
https://doi.org/10.1109/PCCC.2014.7017065
https://doi.org/10.1109/HPCA.2018.00032
https://www.snia.org/tech_activities/standards/curr_standards/pts
https://www.snia.org/tech_activities/standards/curr_standards/pts
http://iotta.snia.org/traces/block-io
https://www.usenix.org/conference/fast12/extracting-flexible-replayable-models-large-block-traces-0
https://www.usenix.org/conference/fast12/extracting-flexible-replayable-models-large-block-traces-0
https://doi.org/10.1145/3423137
https://doi.org/10.1109/IISWC.2015.8
https://doi.org/10.1109/CLOUD.2018.00029

	Abstract
	1 Introduction
	2 Related Works
	3 IOTap: I/O Trace Analysis and Profiling
	4 Experimental Methodology
	5 Evaluation Results
	6 Trace Sampling
	7 Conclusion
	References

