
Fair I/O Scheduler for Alleviating Read/Write
Interference by Forced Unit Access in Flash Memory

Jieun Kim ∗

EE Dept., KAIST
Korea

Dohyun Kim ∗

EE Dept., KAIST
Korea

Youjip Won
EE Dept., KAIST

Korea
ABSTRACT
For the past few years, the enterprise Solid State Drives that
employ NVM Express are widely used due to their high per-
formance. It is common for multiple tenants and processes to
share a single SSD. Providing fair SSD performance for multi-
ple applications has become an important issue. We observe
that the write request with FUA flag delays the processing of
read request due to SSD internal read/write interference. To
alleviate the performance degradation of the read requests,
we propose TABS, per-Type fAir Bandwidth I/O Scheduler
for NVMe SSDs. TABS determines the fair bandwidth pro-
portional to the maximum bandwidth and I/O issue rate for
each type of request. (i) Two-phase Dynamic Scheduling sets
fairness goals dynamically according to the I/O patterns of
workload. Then, it throttles the FUA write requests to meet
the pre-measured fairness goal. (ii) Software-based feedback
makes more accurate scheduling possible. By using these
techniques, TABS can guarantee fairness between the read
and FUA flagged write requests. Finally, compared with the
fairness goals, TABS achieves 76% fairness on average and
up to 99.5% fairness, while the noop scheduler, the default
Linux scheduler, shows 18% fairness.

CCS CONCEPTS
• Information systems→ Flash memory.

KEYWORDS
I/O scheduler, I/O interference, NVMe SSD, flash memory,
Forced Unit Access

∗Both of the authors equally contributed to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539753

ACM Reference Format:
Jieun Kim, Dohyun Kim, and Youjip Won. 2022. Fair I/O Scheduler
for Alleviating Read/Write Interference by Forced Unit Access in
Flash Memory. In 14th ACM Workshop on Hot Topics in Storage and
File Systems (HotStorage ’22), June 27–28, 2022, Virtual Event, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3538643.
3539753

1 INTRODUCTION
Modern Solid State Drives (SSD) can deliver more than 1
million operations per second. Multiple tenants often use
a single SSD due to its high performance and low latency
[12, 20, 22, 41]. SSDs can readily accommodate the I/Os from
multiple applications with their internal hardware paral-
lelism [8, 13, 27, 32, 42]. However, the interference among
the applications that share the SSD still exists [9, 15, 22, 31].

Forced Unit Access (FUA) is a flag set for the I/O command.
It was first mentioned in the SCSI specification [7]. When
a device that supports the FUA receives a write command
with the FUA flag, the data is directly reflected on the disk
surface. The FUA allows the host to ensure data consistency
without explicitly flushing the disk cache in the event of an
unexpected power outage [3, 33]. The FUA is specified in the
NVM express interface [6, 21].

There are the applications that use the FUA flagged write
requests to ensure data durability [16, 17, 23, 28]. QEMU-
KVM and Linux SQL Server provide the execution options for
ensuring data durability with the FUA. directsync cache
mode of QEMU-KVM uses both O_DSYNC and O_DIRECT
semantics. The guest’s I/O requests bypass the host page
cache and are servicedwith the FUA flag [1, 10, 19]. Microsoft
SQL Server usesWrite-Ahead Logging (WAL) to ensure ACID
properties of transactions [37]. The write requests for the
transaction’s log records are dispatched to the disk with the
FUA flag [4, 37]. When the transaction is committed, the log
records are reflected directly on the disk.
The internal parallelism feature of the SSD flash chip al-

lows it to process I/Os in parallel. However, in some cases,
the I/Os are serialized (Sec. 2). If a flash read falls into the
critical path of program execution, it is postponed due to the
program, which has a 10-40 times longer latency than the
read [5]. This is known as read/write Interference [34, 40].

We observe that when the host dispatches both FUA write
(write request with FUA flag) and read requests, the read

86

https://doi.org/10.1145/3538643.3539753
https://doi.org/10.1145/3538643.3539753
https://doi.org/10.1145/3538643.3539753

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Jieun Kim, Dohyun Kim, and Youjip Won

latency becomes longer, similar to the FUAwrite (Sec. 3). It is
unfair that the FUA writes result in excessively long latency
for concurrent read requests. The read/write interference
by the FUA writes is the cause of the unfairness. When
the write request with FUA arrives at the device, a flash
write is executed. When the program execution for the flash
write causes the read/write interference, the read request is
delayed. We call this phenomenon, FUA interference.
We propose TABS, per-Type fAir Bandwidth I/O

Scheduler to alleviate the performance unfairness caused by
FUA interference. TABS provides the fairness between two
types of I/O operations, read and FUA write, at the host level.
TABS determines that the both requests are fair when their
bandwidths are proportional to their maximum bandwidths
and I/O issue rates. For example, when the read and FUA
write requests are issued in a 1:1 ratio, it is fair if the read
bandwidth becomes the half of its maximum bandwidth, as
well as the FUA write. TABS separates the scheduling process
into two phases. During the first phase, it identifies the I/O
pattern and sets the fair bandwidth for each I/O type. During
the second phase, it delays the dispatch of FUAwrite requests
in order to adjust the number of outstanding FUA writes.
TABS provides periodic feedback on the scheduling param-
eters for the accuracy. TABS keeps monitoring the actual
bandwidth and evaluating whether the fairness is satisfying
by the current scheduling policy.
TABS reduces the performance degradation of the read-

intensive workloads even when other applications generate
the FUA writes concurrently. It achieves 76% fairness on
average and up to 99.5%, while the noop scheduler only
reaches 18% fairness on average.

2 BACKGROUND & RELATEDWORKS
2.1 SSD internal parallelism & read/write

interference

Flash Chip Flash Chip

Flash Chip Flash Chip

Flash Chip Flash Chip

Flash Chip Flash Chip

CH A

CH B

CH C

CH D

Way #0 Way #1

Die #0

Program

Read (to die #0)

falls in critical path

Die #1

H
o
st

 I
n
te

rf
ac

e

S
S

D
 C

o
n
tr

o
ll

er

Figure 1: Read request delayed by P/E in the same die.

To maximize I/O parallelism, SSDs employ multiple flash
chips in a multi-channel, multi-way structure [13, 42]. A
channel is an independent I/O bus operated by a micropro-
cessor. Each flash chip consists of one or more dies. A die
consists of several planes. SSDs can process I/O operations
in parallel by distributing them across the multiple channels,
ways, dies, and planes. Flash memory performs read and

write operations in the unit of flash page. For the flash write,
the program of the corresponding pages is executed. Differ-
ent types of flash commands, such as read or program, can
be serialized in the same die [13]. This can degrade the SSD’s
internal hardware parallelism. Only the commands with the
same type can be executed simultaneously in a single die. If
the SSD controller tries to read some pages on the die where
the program is executing, the read command cannot be exe-
cuted until the program is completed [8, 27, 32]. A critical
path is a flash chip component in which the different types
of flash commands cannot be performed at the same time.
SSD write latency is nearly 10-40 times that of read latency
[5]. When the flash read falls into the critical path of write
processing, it would be delayed (Fig. 1). This is referred to as
SSD read/write interference [40].

2.2 Fair I/O Scheduling
Existing fair I/O schedulers are primarily designed to provide
independent I/O performance across the multiple tasks that
share the same storage device. FIOS [26] mentions how to
resolve read/write interference at the host level. It adopts a
naive approach, however, by dispatching the read request
first and blocking all the write requests until the already
dispatched read is complete. The write request can be con-
tinuously blocked due to the frequent read requests. Many
studies have proposed the schedulers for providing the fair
performance of themultiple tasks that share the same storage
device [11, 25, 26, 30, 35, 36, 38]. These schedulers address
the fairness among the processes that are running at the
same time, but not with the fairness among the different
types of I/O operations. There has been a study on schedul-
ing the read/write fairness [18]. Lee et. al [18] isolates the
read and write dispatch queues in the NVMe driver to reduce
read/write interference. The ratio between the number of
the read and write queues, which is statically set when the
system boots, determines the performance of each type of
I/O request. As a result, it is difficult to say that it is fair
because the goal is always the same regardless of the I/O
patterns. There have also been studies of the device-side I/O
schedulers in which the device’s controller schedules flash
read and write operations [34, 39]. This approach, in com-
parison to scheduling at the host level, necessitates firmware
modification, making it difficult for users to adopt.

3 MOTIVATION
3.1 FUA write interference
In this section, we observe and analyze the FUA interference
with the read requests on OLTP benchmark in the virtual-
ized environment. We use QEMU-KVM (6.2.91) [28] to create
virtual machines. We use sysbench [14] as the OLTP bench-
mark and evaluate the MySQL [24] performance. A single

87

Fair I/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory HotStorage ’22, June 27–28, 2022, Virtual Event, USA

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(K

 t
ra

n
s
a

c
ti
o

n
s
 /
 s

e
c
o

n
d

)

Time (sec)

Figure 2: Throughput of OLTP benchmark on
VMreadonly. VMinterference performs OLTP write-only
workload (Blue) and OLTP read-only workload (Yel-
low) alternately.

MySQL server runs on each virtual machine. When a vir-
tual machine performs the sysbench, it executes the queries
on its MySQL server. The virtual machines share the same
NVMe storage device. Each virtual machine uses a logically
independent 100GB partition as its virtual NVMe disk. The
guest’s MySQL server stores all the data in its virtual disk.
We set the cache mode of the virtual NVMe disk to directsync.
The FUA flag is set for all the write requests generated by the
virtual machines. All requests bypass the host’s page cache.
We observe how the FUA write requests from the virtual ma-
chine affect the read performance of another virtual machine
sharing the same SSD. The host and guest configurations are
shown in Table 1.

Guest HostVMreadonly VMinterference

Software
Configuration

OS Centos 7.9 (Linux v5.8.5)

Applications MySQL 8.0.29
Sysbench 1.1.0 QEMU-KVM 6.2.91

Hardware
Configuration

CPU 1 vCPU 7 vCPUs 4 Cores (8threads)
Memory 2GB 2GB 16GB
Storage

(Cache Mode)
Virtual NVMe Disk
100GB (directsync)

Samsung 970 Pro
512GB

Table 1: Configuration of the guests and host.

We generate one virtual machine which performs a read-
intensive workload. We call it VMreadonly. VMreadonly runs the
OLTP read-only workload, which executes the read-only
queries like SELECT. We create another virtual machine
that interferes with VMreadonly. We call this virtual machine
as VMinterference. To compare the interference caused by the
read and the FUA write requests, VMinterference alternately
performs the FUA write-intensive workload and the read-
intensive workload. VMinterference uses the OLTP write-only
for the FUA write-intensive workload and the OLTP read-
only for the read-intensive workload. The OLTP write-only
workload executes UPDATE, DELETE and INSERT queries.
We set the 120 seconds gap between the two workloads. In
this gap, VMinterference does not operate any workloads. All
the workloads access the database which has 1000 tables
with 100,000 records each.

The performance of VMreadonly varies greatly according
to the I/O types generated by VMinterference. Fig. 2 shows

the throughput of VMreadonly when it concurrently operates
with VMinterference . The blue and yellow regions represent the
period that VMinterference runs the FUA write-intensive and
read-intensive workload, respectively. VMinterference does not
perform the workload in the white region; only VMreadonly ex-
ecutes the OLTP read-only workload. When there is no work-
load running on VMinterference, VMreadonly performs about 300
TPS. VMreadonly’s performance drops by around 43%, from 300
to 170 TPS, when VMinterference performs the OLTP read-only
workload simultaneously (Yellow region). In the blue area,
the performance degradation of VMreadonly is much worse.
When VMinterference performs the FUA write-intensive work-
load, VMreadonly’s performance drops by around 72 %, from
300 to 85 TPS. When virtual machines share the same SSD,
the I/O interference caused by the FUA write requests is
greater than the read requests.

3.2 Interference Analysis

User Type I/O engine # threads I/O size I/O depth I/O type Options
Reader libaio 1 16 KB 128 random read direct & sync
Writer libaio 1 16 KB 128 random write direct & sync

Table 2: Configuration for workers (fio).

To analyze the FUA interference in detail, we simulate an
environment in which the FUA-intensive and read-intensive
workloads are running simultaneously. To do this, we define
two workers, Reader and Writer. Table 2 shows the con-
figurations for each worker. Each worker runs as a single
thread and uses the libaio engine. The libaio engine uses
asynchronous I/O. We also set the direct option of fio to
reduce the impact of the host’s page cache. All I/O requests
bypass the host page cache. Each worker issues an operation
of size 16 KB. I/O depth is 128. Reader and Writer perform
random read and write, respectively. We set the sync op-
tion of fio for the writers to be able to send the write with
the FUA flag. When both direct and sync options are set
to 1, the O_DIRECT and O_DSYNC flags are set on the open
flag for the file. In Linux, if system call, open(), is invoked
with O_DIRECT and O_DSYNC, the write request to file data
is processed as direct I/O and the FUA flag is set [2].

We measure performance using 4 cores and 8 threads, 16
GB of DRAM machine, and an NVMe SSD (970 Pro) [29] as a
storage device. We vary the number of workers and measure
the bandwidth of read and write of each worker. For the
convenience of explanation, the name of each workload is
defined as {𝑁𝑤𝑟𝑖𝑡𝑒𝑟 }𝑤{𝑁𝑟𝑒𝑎𝑑𝑒𝑟 }𝑟 according to the number
of workers. Then, we analyze the effect of FUA interference
on the concurrent read. Fig. 3 shows the performance of a
single reader in each situation where the reader runs with
other workers; another reader, a writer (w-sync, w/ FUA),
and a writer who does not set the sync option (w-nosync).

88

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Jieun Kim, Dohyun Kim, and Youjip Won

0.0

0.4

0.8

1.2

1.6

1r 2r 1w1r
(nosync)

1w1r
(sync)B

a
n

d
w

id
th

 (
G

iB
/s

)

Workload

Reader

1.53

0.76 0.66
0.24

Figure 3: Read Bandwidth of a
Reader with another worker.

0.0

0.1

0.2

0.3

1w 1w1r 2w1r 3w1rB
a

n
d

w
id

th
 (

G
iB

/s
)

Workload

Reader
Writer 1
Writer 2
Writer 3

Figure 4: I/O Bandwidth of single
Reader & multiple Writers.

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25

P
ro

b
a

b
ili

ty

I/O Latency (ms)

read (1r)
write (1w)
read (1w1r)
write (1w1r)

Figure 5: I/O Latency for 1r, 1w and
1w1r.

For 1w1r-nosync, the write request is the direct I/O and the
FUA flag is not set. The write requests are only transferred
to the disk’s writeback cache. We’ll call it cache writer.
The drop in read performance caused by FUA writes is

noticeable. When the reader is added to a single reader (2r),
the single reader’s bandwidth is reduced to 0.76 GiB/s, which
is 50% of the original capacity. Two readers occupy the band-
width equally. When the cache writer is added, it is reduced
by about 57% to 0.66 GiB/s. When the writer is running
concurrently, the bandwidth decrease of a single reader is
substantially more than when running with the reader or
cache writer.
We find that due to the FUA interference, the reader’s

performance falls to a level comparable to the FUA write.
Fig. 4 shows the bandwidth of each worker when the number
of concurrently operating readers is fixed to one and the
number of writers is changed. For comparison, the result of
1w is added. Surprisingly, regardless of the operation types,
all workers have comparable bandwidth. Each worker seems
to have fair device utilization, but they do not. In the case
of 1w1r, the reader’s bandwidth is reduced by 84.3%, while
the writer only decreases by 12% from 0.27 GiB/s to 0.24
GiB/s. The latency of the read request, which is quite low
in comparison to the write, becomes nearly the same as
the write (Fig. 5). The reader’s bandwidth gets worse as the
number of writers increases (Fig. 4). For workload 3w1r, the
reader’s bandwidth is only about 5.8% of the maximum read
bandwidth.

3.3 Outstanding FUA writes
Wemeasure how the interference behavior changes when we
reduce the number of outstanding FUA writes. We change
the I/O depth of the writer and observe how the bandwidth of
each worker changes. I/O depth is the maximum number of
requests a worker can issue asynchronously. As it is reduced,
the number of outstanding I/O generated by the worker de-
creases as well. The bandwidth of concurrent read operations
also increases due to the alleviation of FUA write interfer-
ence. Fig. 6 shows the read and write bandwidth when the
writer’s I/O depth varies. In 1w1r and 3w1r, when the I/O
depth becomes less than 64 and 20, respectively, the read
bandwidth rises sharply. FUA interference is alleviated by

reducing the number of outstanding FUA writes. The desired
read performance can be achieved by adjusting the number
of outstanding FUA writes.

0.0

0.4

0.8

1.2

1.6

 0 32 64 96 128

B
a

n
d

w
id

th
 (

G
iB

/s
)

I/O depth

Read
Write

(a) 1w1r

0.0

0.4

0.8

1.2

1.6

 0 32 64 96 128

B
a

n
d

w
id

th
 (

G
iB

/s
)

I/O depth

Read
Write

(b) 3w1r
Figure 6: I/O Bandwidth of each type of I/O with vary-
ing writers’ I/O depth.

4 DESIGN & IMPLEMENTATION
4.1 Overview & Goal
We find that reducing the number of outstanding FUAs at the
host level can alleviate read/write interference in the SSD.
We propose newly developed I/O scheduler for flash memory,
particularly NVMe SSDs. TABS delays the dispatch of FUA
write to obtain the proper bandwidth for both read and FUA
write requests. TABS, per-type fair bandwidth I/O scheduler,
guarantees that read and FUA write requests use the device
fairly. TABS gives the different bandwidth weights to read
and FUA write requests. Each of their bandwidth must be
proportional to their respective weights to achieve fairness.
The weights of read or FUA write are set to be proportional
to their maximum bandwidth (𝐵𝑊𝑀𝑎𝑥) and I/O issue rate (I).
Accordingly, the fair bandwidth (FBW) is defined as Eq. 1.

𝐹𝐵𝑊𝑥 = 𝐵𝑊𝑀𝑎𝑥,𝑥 × I𝑥
I𝑡𝑜𝑡𝑎𝑙

(1)

In TABS, we use two techniques, (i) Two-Phase Dynamic
Scheduling and (ii) Software-based Feedback. Through these
two techniques, TABS achieves the fair bandwidth dynami-
cally with low overhead from the I/O scheduler. Fig. 7 shows
the overview of TABS.

4.2 Two-Phase Dynamic Scheduling
TABS divides the scheduling process into two phases; IDLE
and SCHED. During the IDLE phase, it observes the current
I/O pattern in order to reflect the fairness goals immedi-
ately based on the workload characteristics. The collected

89

Fair I/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory HotStorage ’22, June 27–28, 2022, Virtual Event, USA

Figure 7: TABS Overview.

information on I/O pattern may differ from the actual one
if the scheduler is working. To avoid this problem, the I/O
scheduling is disabled during this period. TABS throttles the
dispatch of the FUA write requests during the SCHED phase.
We define the throttling factor (𝛼). The number of dispatched
FUA write (𝑁𝑓 𝑢𝑎) is limited to the number of dispatched read
requests (𝑁𝑟𝑒𝑎𝑑) multiplied by the throttling factor.

IDLE Phase During this phase, TABS recognizes the cur-
rent workload’s I/O pattern. It counts the number of issued
I/O requests 1 from the host (1 in Fig. 7). When enough I/O
statistics have been collected, scheduling can begin. When
the number of issued I/Os collected by TABS exceeds the
threshold, the phase is switched from IDLE to SCHED (2 in
Fig. 7). The statistics collected by TABS are periodically reset.
The reset period and threshold should be configured accord-
ing to their system environments, such as the spec of the
storage device. When the phase is switched, the scheduler
delivers the fair bandwidth (Eq. 1) and throttling factor. Both
are calculated based on the number of issued I/O requests.
The throttling factor is initialized by dividing the number of
read requests by the number of write requests.

SCHED Phase During this phase, the issued I/O requests
from the host are scheduled (3 in Fig. 7). The requests in-
serted into the NVMe device driver’s submission queue (SQ)
are dispatched to storage in the order in which they are
queued. TABS does not schedule any read requests. On the
other hand, the FUA write requests are scheduled to meet
the fairness goal. TABS inserts the FUA write requests into
a newly created queue, the FUA delay queue. Only a certain
number of queued FUA write requests are moved to SQ and
given a chance to dispatch.

SCHED phase is composed of multiple epochs. The epoch
is a time period. In the SCHED phase, the scheduler mea-
sures the actual bandwidth in the unit of epoch. Then, it
processes the feedback to readjust the throttling factor by
comparing the per-epoch bandwidth to the fair bandwidth
(4 in Fig. 7). Through the feedback process, the scheduler
keeps regulating the throttling factor that can reach the fair
bandwidth.

1the number of I/O requests that inserted into SQ of NVMe device drive.

4.3 Software-based Feedback
In this section, we explain the detail of the feedback pro-
cess. TABS compares the per-epoch bandwidth to the fair
bandwidth every end of the epoch. Once the per-epoch band-
width is less than 90% of the fair bandwidth. it re-calculates
the fairness factor. To do this, we first calculate the change
ratio of the throttling factor. The factor must change at a
rate of the change ratio. The change ratio is calculated by
the per-epoch bandwidth divided by the fair bandwidth. It is
always lower than one. The scheduler calculates and applies
the change ratio for each I/O type, one by one. For read re-
quests, TABS adjusts the throttling factor by multiplying the
change ratio and original factor to make it smaller. On the
other hand, for FUA write requests, TABS divides the original
factor by the change ratio.

5 EVALUATION
5.1 Experiment Setup
Here, we examine the bandwidth and fairness achievement
of TABS on a machine with 4 cores and 8 threads (Intel(R)
Core(TM) i7-4790 CPU with 3.60GHz) and 16 GByte DRAM.
The CentOS 7.4 (kernel v5.8.5) and Samsung 970 Pro 512GB
[29] are used. To measure the bandwidth of each type of I/O
request, we define the two types of workers, the same as
those used in Section 3. All workers bypass the host page
cache. Writer sends the random write with FUA flags and
Reader sends the random read (Table 2). The number of
active cores is set to be the same as the number of workers
for all workloads.

We evaluate TABS and noop scheduler, the default sched-
uler for Linux kernel. In order to verify the fairness, we
compare the bandwidth results with the calculated fair band-
width (Eq. 1) for all workloads. For the maximum bandwidth
of each I/O type, we use the pre-measured value; 1530 MiB/s
for read and 273 MiB/s for FUA write. The I/O issue rate ratio
is assumed to be the same as the ratio between the number
of Reader and Writer. Lastly, the static values for TABS are
as follows: During the IDLE Phase, the reset period is 500 ms
and the threshold is 5,000. Once the total count is over 5,000
in 500 ms, TABS switches the phase from IDLE to SCHED.

90

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Jieun Kim, Dohyun Kim, and Youjip Won

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1
w

1
r

1
w

2
r

1
w

3
r

2
w

1
r

2
w

2
r

3
w

1
r

B
a
n
d
w

id
th

 (
G

iB
/s

)

Workload

TABS
Noop

(a) Total bandwidth of read

0.00
0.05
0.10
0.15
0.20
0.25
0.30

1
w

1
r

1
w

2
r

1
w

3
r

2
w

1
r

2
w

2
r

3
w

1
r

B
a
n
d
w

id
th

 (
G

iB
/s

)

Workload

(b) Total bandwidth of write

Figure 8: I/O Bandwidth of TABS & Noop, ✚: Fair Bandwidth of workload.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1
w

1
r

1
w

2
r

1
w

3
r

2
w

1
r

2
w

2
r

3
w

1
rF

a
ir
n

e
s
s
 F

a
c
to

r

Workload

TABS Noop

Figure 9: Fairness Factor (Eq. 2)

The SCHED Phase lasts 50 seconds and each epoch is set
to be 1 second. TABS regulates the throttling factor every 1
second.

5.2 I/O Scheduling
To confirm that the fairness is achieved through TABS, we
measure the bandwidths of the read and FUA write requests
with varying the number of two workers. We omit the band-
width of each worker since TABS only considers the fair
bandwidth of each I/O type. The bandwidth results for all
workloads we evaluated are shown in Fig. 8. Fig. 8a and
Fig. 8b illustrate the bandwidths of the read and FUA write
requests, respectively. Due to the lack of active cores, we only
analyzeworkload for up to fourworkers. The fair bandwidths
of the workloads are also shown in Fig. 8 for comparison.
As we previously stated, the fair bandwidth is based on the
reader and writer ratio.

In all workloads except 1w1r, the bandwidths of both types
of I/O requests in TABS are similar to or higher than their
own fair bandwidth (Fig. 8). TABS achieves the fairness goal
that we define. IDLE phase detects the current I/O pattern of
executed workload successfully without any pre-setting for
the workload. TABS can achieve the proper fairness for all
the workloads, because its goal changes dynamically accord-
ing to the current I/O pattern. The fair I/O scheduler, TABS,
provides more opportunities to obtain higher performance
for the I/O type that is generally faster and quicker. It gives
the device the possibility to accommodate more I/O traffic
even if the FUA requests are issued frequently.

We calculate the error rate of each I/O type and workload.
The error rate is the normalized error to fair bandwidth,
which is calculated from the absolute difference between
actual and fair bandwidth. The average error rates for the
other workloads except 1w1r are 0.18 and 0.15 for read and
FUA write, respectively. The error rates of workload 1w1r
are 0.40 and 0.34. This is more than double that of the other
workloads. However, even though it has the largest errors, it
is still substantially fairer than the noop scheduler (Fig. 9).

5.3 Fairness Factor
To compare the fairness between the noop scheduler and
TABS, we define the fairness factor (F) (Eq. 2). The fairness

factor represents how fair the two types of I/O requests are in
terms of bandwidth. The read/FUA write operations become
fairer as the fairness factor approaches one. When the factor
is one, we assume that the performance of all types of I/Os
is 100% fair.

F =
𝐵𝑊𝑟𝑒𝑎𝑑/{𝐵𝑊𝑀𝑎𝑥,𝑟𝑒𝑎𝑑 × 𝐼𝑟𝑒𝑎𝑑 }
𝐵𝑊𝑓 𝑢𝑎/{𝐵𝑊𝑀𝑎𝑥,𝑓 𝑢𝑎 × 𝐼𝑓 𝑢𝑎}

(2)

The fairness factors of the noop scheduler and TABS for
all workloads are shown in Fig. 9. For comparing the result
easier, we inverse the value when it is more than one. Factor
calculation is done with Eq. 2, but if the factor is 1 or more,
the reciprocal number of the result is taken for ease of verifi-
cation. The average fairness factor is 76% for TABS and 18%
for noop scheduler. TABS shows the 4× higher fairness than
the noop scheduler.

6 CONCLUSION
In modern NVMe SSD, multiple outstanding FUAs degrade
concurrent read’s performance. When the FUA write arrives
at the device, it occurs the flash write inside the SSD. The
flash read/write interference induced by the FUA is the cause
of the unfairness. We propose a fair I/O scheduler for NVMe
SSDs, TABS, that delays the FUA write dispatch to obtain
the proper bandwidth for both read and FUA write requests.
TABS provides fairness between different types of I/Os at the
host level. To ensure the fairness according to the request
type, the bandwidth of each request is set to be proportional
to its maximum bandwidth. The scheduler process is com-
posed of two phases; IDLE and SCHED. TABS serves the
different fairness goals according to the workloads. Lastly, it
achieves 4 × higher fairness than the noop scheduler.

7 ACKNOWLEDGEMENTS
We would like to thank Bryan S. Kim, our shepherd, for
his assistance in finalizing our paper. We would also like
to thank the anonymous reviewers for their insightful com-
ments, which made us improve the paper. This work was
supported by IITP, Korea (No. 2018-0-00549), NRF, Korea
(No. NRF-2020R1A2C3008525), and SNU-SK Hynix Solution
Research Center (S3RC) (No. MOUS002S).

91

Fair I/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory HotStorage ’22, June 27–28, 2022, Virtual Event, USA

REFERENCES
[1] Dulcardo Arteaga and Ming Zhao. 2014. Client-side flash caching for

cloud systems. In Proc. of ACM SYSTOR. 1–11.
[2] Dave Chinner. 2018. iomap: Use FUA for pure data O_DSYNC DIO

writes. https://patchwork.kernel.org/project/linux-fsdevel/patch/
20180418040828.18165-5-david@fromorbit.com/.

[3] Jonathan Corbet. 2010. The end of block barriers. https://lwn.net/
Articles/400541/.

[4] Robert Dorr. 2022. SQL Server On Linux: Forced Unit Access (Fua)
Internals. https://techcommunity.microsoft.com/t5/sql-server-blog/
sql-server-on-linux-forced-unit-access-fua-internals/ba-p/3199102.

[5] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mah-
mut T Kandemir, Chita R Das, and Myoungsoo Jung. 2017. Exploiting
intra-request slack to improve SSD performance. In Proc. of ASPLOS.
375–388.

[6] NVM Express. 2019. NVM Express Base Specification Revision
1.4. https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-
2019.06.10-Ratified.pdf.

[7] Fibre Channel FC and Serial Attached SCSI SAS. 2016. SCSI Commands
Reference Manual. (2016).

[8] Congming Gao, Liang Shi, Kai Liu, Chun Jason Xue, Jun Yang, and
Youtao Zhang. 2020. Boosting the performance of SSDs via fully
exploiting the plane level parallelism. IEEE TPDS 31, 9 (2020), 2185–
2200.

[9] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat.
2006. Enforcing performance isolation across virtual machines in xen.
In Proc. of ACM/IFIP/USENIX Middleware. Springer, 342–362.

[10] Son-Hai Ha, Daniele Venzano, Patrick Brown, and Pietro Michiardi.
2016. On the impact of virtualization on the I/O performance of
analytic workloads. In Proc. of CloudTech. IEEE, 31–38.

[11] Wei Jin, Jeffrey S Chase, and Jasleen Kaur. 2004. Interposed propor-
tional sharing for a storage service utility. ACM SIGMETRICS PER 32,
1 (2004), 37–48.

[12] Byunghei Jun and Dongkun Shin. 2015. Workload-aware budget com-
pensation scheduling for NVMe solid state drives. In Proc. of NVMSA.
IEEE, 1–6.

[13] Myoungsoo Jung and Mahmut T Kandemir. 2012. An Evaluation of
Different Page Allocation Strategies on High-Speed SSDs. In Proc. of
USENIX HotStorage.

[14] Alexey Kopytov. 2004. Sysbench: a system performance benchmark.
http://sysbench. sourceforge. net/ (2004).

[15] Norbert Kuck, Harald Kuck, Edgar Lott, Christoph Rohland, and Oliver
Schmidt. 2002. SAP VM Container: Using process attachable virtual
machines to provide isolation and scalability for large servers. Article,
SAP AG, Walldorf, Germany 2 (2002).

[16] KVM. 2017. KVM Disk Cache Modes. (2017). https:
//doc.opensuse.org/documentation/leap/virtualization/html/book-
virtualization/cha-cachemodes.html.

[17] KVM. 2021. KVM, Kernel-based Virtual Machine. https://www.linux-
kvm.org/page/Main_Page.

[18] Minkyeong Lee, Dong Hyun Kang, Minho Lee, and Young Ik Eom.
2017. Improving read performance by isolating multiple queues in
NVMe SSDs. In Proc. of IMCOM. 1–6.

[19] Xiaofei Liao, Hai Jin, Xuhong Wang, Bingbing Zhou, and Dingding Li.
2013. VDB: Virtualizing the On-Board Disk Write Cache. In Proc. of
HPCC & EUC. IEEE, 948–955.

[20] Renping Liu, Xianzhang Chen, Yujuan Tan, Runyu Zhang, Liang Liang,
and Duo Liu. 2020. SSDKeeper: Self-adapting channel allocation to
improve the performance of SSD devices. In Proc. of IPDPS. IEEE, 966–
975.

[21] Shane Matthews. 2015. NVM Express: SCSI Translation Reference.
NVM Express Workgroup (2015), 1–54.

[22] Alex Merenstein, Vasily Tarasov, Ali Anwar, Deepavali Bhagwat, Julie
Lee, Lukas Rupprecht, Dimitris Skourtis, Yang Yang, and Erez Zadok.
2021. CNSBench: A Cloud Native Storage Benchmark. In Proc. of
USENIX FAST. 263–276.

[23] Microsoft. 2022. Microsoft SQL Server. https://www.microsoft.com/ko-
kr/sql-server/sql-server-2022.

[24] MySQL. 2022. MySQL Documentation. https://dev.mysql.com/doc/.
[25] Chandandeep Singh Pabla. 2009. Completely fair scheduler. Linux

Journal 184 (2009), 4.
[26] Stan Park and Kai Shen. 2012. FIOS: a fair, efficient flash I/O scheduler..

In Proc. of USENIX FAST, Vol. 12. 13–13.
[27] Seon-yeong Park, Euiseong Seo, Ji-Yong Shin, Seungryoul Maeng, and

Joonwon Lee. 2010. Exploiting internal parallelism of flash-based SSDs.
IEEE Computer Architecture Letters 9, 1 (2010), 9–12.

[28] QEMU. 2022. QEMU, Open Source Processor Emulation. http://www.
qemu.org.

[29] Samsung. 2018. Samsung V-NAND SSD 970 PRO. https://s3.ap-
northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_
SSD_970_PRO_Data_Sheet_Rev.1.0.pdf.

[30] Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler
for Flash-Based SSDs. In Proc. of USENIX ATC. 67–78.

[31] Gaurav Somani and Sanjay Chaudhary. 2009. Application performance
isolation in virtualization. In Proc. of CLOUD. IEEE, 41–48.

[32] Xiang Song, Jian Yang, and Haibo Chen. 2013. Architecting flash-
based solid-state drive for high-performance i/o virtualization. IEEE
Computer Architecture Letters 13, 2 (2013), 61–64.

[33] Curtis E. Stevens. 2008. Information technology - AT
Attachment 8 - ATA/ATAPI Command Set (ATA8-ACS).
https://web.archive.org/web/20200806025823/http://www.t13.
org/Documents/UploadedDocuments/docs2008/D1699r6a-ATA8-
ACS.pdf.

[34] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie
Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan
Gómez-Luna, and Onur Mutlu. 2018. FLIN: Enabling fairness and
enhancing performance in modern NVMe solid state drives. In proc. of
ACM ISCA. IEEE, 397–410.

[35] Paolo Valente. 2019. Budget Fair Queueing. https://lwn.net/Articles/
784267/.

[36] Carl A Waldspurger and William E Weihl. 1994. Lottery scheduling:
Flexible proportional-share resource management. In Proc. of USENIX
OSDI. 1–es.

[37] DennisWhite. 2013. Microsoft® SQL Server®Always on I/O Reliability
Storage System on Hitachi Virtual Storage Platform. (2013).

[38] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021.
D2FQ:Device-Direct Fair Queueing for NVMe SSDs. In Proc. of USENIX
FAST. 403–415.

[39] Guanying Wu and Xubin He. 2012. Reducing SSD read latency via
NAND flash program and erase suspension.. In Proc. of USENIX FAST,
Vol. 12. 10–10.

[40] Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. 2019. Hotr:
Alleviating read/write interference with hot read data replication for
flash storage. In Proc. of DATE. IEEE, 1367–1372.

[41] Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. Cffq: I/o scheduler
for providing fairness and high performance in ssd devices. In Proc. of
IMCOM. 1–6.

[42] Balgeun Yoo, Youjip Won, Seokhei Cho, Sooyong Kang, Jongmoo Choi,
and Sungroh Yoon. 2011. SSD Characterization: From Energy Con-
sumption’s Perspective. In Proc. of USENIX HotStorage.

92

https://patchwork.kernel.org/project/linux-fsdevel/patch/20180418040828.18165-5-david@fromorbit.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/20180418040828.18165-5-david@fromorbit.com/
https://lwn.net/Articles/400541/
https://lwn.net/Articles/400541/
https://techcommunity.microsoft.com/t5/sql-server-blog/sql-server-on-linux-forced-unit-access-fua-internals/ba-p/3199102
https://techcommunity.microsoft.com/t5/sql-server-blog/sql-server-on-linux-forced-unit-access-fua-internals/ba-p/3199102
https://nvmexpress.org/wp-content/uploads/ NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/ NVM-Express-1_4-2019.06.10-Ratified.pdf
https://doc.opensuse.org/documentation/leap/virtualization/html/book-virtualization/cha-cachemodes.html
https://doc.opensuse.org/documentation/leap/virtualization/html/book-virtualization/cha-cachemodes.html
https://doc.opensuse.org/documentation/leap/virtualization/html/book-virtualization/cha-cachemodes.html
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.microsoft.com/ko-kr/sql-server/sql-server-2022
https://www.microsoft.com/ko-kr/sql-server/sql-server-2022
https://dev.mysql.com/doc/
http://www.qemu.org
http://www.qemu.org
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_PRO_Data_Sheet_Rev.1.0.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_PRO_Data_Sheet_Rev.1.0.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_PRO_Data_Sheet_Rev.1.0.pdf
https://web.archive.org/web/20200806025823/http://www.t13.org/Documents/UploadedDocuments/docs2008/D1699r6a-ATA8-ACS.pdf
https://web.archive.org/web/20200806025823/http://www.t13.org/Documents/UploadedDocuments/docs2008/D1699r6a-ATA8-ACS.pdf
https://web.archive.org/web/20200806025823/http://www.t13.org/Documents/UploadedDocuments/docs2008/D1699r6a-ATA8-ACS.pdf
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/

	Abstract
	1 Introduction
	2 Background & Related Works
	2.1 SSD internal parallelism & read/write interference
	2.2 Fair I/O Scheduling

	3 Motivation
	3.1 FUA write interference
	3.2 Interference Analysis
	3.3 Outstanding FUA writes

	4 Design & Implementation
	4.1 Overview & Goal
	4.2 Two-Phase Dynamic Scheduling
	4.3 Software-based Feedback

	5 Evaluation
	5.1 Experiment Setup
	5.2 I/O Scheduling
	5.3 Fairness Factor

	6 Conclusion
	7 Acknowledgements
	References

