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NDP’s Data Distribution Problem (1/2)

▪ Near Data-Processing (NDP) is a simple concept

• Move compute to the data to reduce IO traffic

▪ But, modern distributed storage make this tricky

• Sharding/striping systems don’t respect semantic boundaries
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NDP’s Data Distribution Problem (2/2)

▪ Some systems punt on the issue…

• Assume replicas, or data collation…

• Erodes NDP goodness, makes life hard for computational storage devices

▪ Others go for application specific approaches

• Ceph Skyhook application has awareness for data placement of tables

• Some MapReduce apps have record boundary awareness for inter-node reads

• Can be complex to realize in practice, difficult to retrofit or extend general purpose systems
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Ceph Skyhook
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Can we just… you know….. not do that?

1) Can we lay out data  in such a way to avoid boundary conditions?

2) Can we do so without application specific changes to the 
underlying systems? 

3) Can we do so in a way that enables simple NDP without a lot of 
storage system awareness? 

More concretely:
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Solution: Data Alignment
Adjust data locations elements within shards and stripes 
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Background and Observations

▪ Lots of useful operations can be done 
on data elements

• Keyframes in video, row groups of columnar 
data…
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▪ Storage systems lay out data in a 
predictable manner

• Shard and stripe boundaries are predictable

▪ Distributed storage shards data at 
relatively coarse granularity

• In contrast to traditional RAID, MiB ranges 
are common

• Fit many data elements in a shard
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Data Alignment Intuition
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Hints for  Striped Environments

Stripe Unit 1-1Stripe 1

Stripe 2

Shard Shard Shard Shard

Stripe Unit 1-4Stripe Unit 1-2 Stripe Unit 1-3
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... ... ... ...
Stripe N N-1 N-2 N-3 N-4

...

▪ Stripes are written across shards, and are predictable in their sizes

• Stripe units reside on one shard

• We can use stripe units sizes to generate alignment hints.

▪ Alignment hints are simply byte offsets that delimit a stripe unit border

• With these hints, we can tell when a data element will be in a boundary condition
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Generating Alignment Hints

▪ Hint generator inputs

• Maximum stripe size

• Number of data shards

• Estimated size of next batch of 
data elements (DE)

▪ Data elements are laid out 
within the bounds of the 
hints

• Unused space is padded out

• If the batch size is less than a 
stripe, we assume a dynamic 
stripe resizing. 

• Overhead to ensure space for padding

Max Stripe (10 MiB) Data Shards (4)

Stripe Unit Hint Generator

DE Batch Size 
DE SZ >= stripe

true false

(10/4) = 2.5 MiB
(batch sz+ 

overhead)/4

Stripe Hints
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Layout Example

Hint Generator
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layout parameters
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1) Generate Stripe 
Alignment Hints

2) Fill areas with 
data elements and 
padding

3) Save padding 
offsets as metadata

4) Write stripe to 
storage
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Proof of Concept: CSV Data Filtering
Aligned data stored in MinIO, then processed via parallel containers
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Experimental Overview

▪ 4 Node (2+2) MinIO Deployment

▪ 1.7 GiB CitiBike dataset

• Used alignment hints to pad data

▪ Simple filter query that selects ~25k records

• Container service offers SQLite functionality

▪ Compare to built in S3-Select

• Using unaligned data

▪ Queries issued from separate node from MinIO
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CSV Data Filtering + MinIO

Hint Generator

CSV Alignment App

MinIO-1

Raw CSV Data Aligned CSV Data

MinIO-2 MinIO-3 MinIO-4

PUT

Aligned

Data-1
Aligned 

Data-2
Parity-1Parity-2

Filter 

Service

Filter 

Service

“SELECT * WHERE….”

Filter 

Service
Filter 

Service

▪ Aligning data we can reduce need for 
coordination  and enable simple 
parallelism

▪ S3-Select (not shown here) requires 
collation at a MinIO node
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Results Overview

▪ It works!

• We can trivially parallelize many 
filtering operations

▪ Compared to built in filtering, 
significantly reduces data 
movement

• Will vary on selectivity

• Some collation may still be needed, 
e.g. a SUM

▪ Low overhead (for CSV)

• ~8 KiB for padding and extra metadata
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S3 Select vs Co-Located Containers
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Lots More To Do!

▪ We started with a very simple example, a good start, but…

• What about more sophisticated data types?

▪ More native support for NDP

▪ Quality of service (QOS)

• We have a complex, distributed scheduling problem
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Thanks for your time! Please reach out 
with questions or comments!
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