
HotStorage 2021

Enabling Near-Data Processing in
Distributed Object Storage Systems
Ian F. Adams, Neha Agrawal*, Michael P. Mesnier

Intel Labs, *Portland State University (work done while at Intel)

Intel Confidential 2

NDP’s Data Distribution Problem (1/2)

▪ Near Data-Processing (NDP) is a simple concept

• Move compute to the data to reduce IO traffic

▪ But, modern distributed storage make this tricky

• Sharding/striping systems don’t respect semantic boundaries

1 2 3 4 5 6-

-6 7 8 9 10 11 12 13

Server 1 Server 2 Server 3 Server 4

…

Intel Confidential 3

NDP’s Data Distribution Problem (2/2)

▪ Some systems punt on the issue…

• Assume replicas, or data collation…

• Erodes NDP goodness, makes life hard for computational storage devices

▪ Others go for application specific approaches

• Ceph Skyhook application has awareness for data placement of tables

• Some MapReduce apps have record boundary awareness for inter-node reads

• Can be complex to realize in practice, difficult to retrofit or extend general purpose systems

S3 Select

+

Ceph Skyhook

Intel Confidential 4

Can we just… you know….. not do that?

1) Can we lay out data in such a way to avoid boundary conditions?

2) Can we do so without application specific changes to the
underlying systems?

3) Can we do so in a way that enables simple NDP without a lot of
storage system awareness?

More concretely:

Intel Confidential 5

Solution: Data Alignment
Adjust data locations elements within shards and stripes

Intel Confidential 6

Background and Observations

▪ Lots of useful operations can be done
on data elements

• Keyframes in video, row groups of columnar
data…

Keyframe
Delta

Row Group

H E R E I S D A T A

H E R E I S D A T A

12

34

56

“123456”

▪ Storage systems lay out data in a
predictable manner

• Shard and stripe boundaries are predictable

▪ Distributed storage shards data at
relatively coarse granularity

• In contrast to traditional RAID, MiB ranges
are common

• Fit many data elements in a shard

Intel Confidential 7

Data Alignment Intuition

1 2 3 4 5 …

…

6

1 2 3 4 5 6
p

a

d

pad

Unaligned

Aligned

Intel Confidential 8

Hints for Striped Environments

Stripe Unit 1-1Stripe 1

Stripe 2

Shard Shard Shard Shard

Stripe Unit 1-4Stripe Unit 1-2 Stripe Unit 1-3

Stripe Unit 2-1 Stripe Unit 2-2 Stripe Unit 2-3 Stripe Unit 2-4

...
Stripe N N-1 N-2 N-3 N-4

...

▪ Stripes are written across shards, and are predictable in their sizes

• Stripe units reside on one shard

• We can use stripe units sizes to generate alignment hints.

▪ Alignment hints are simply byte offsets that delimit a stripe unit border

• With these hints, we can tell when a data element will be in a boundary condition

Intel Confidential 9

Generating Alignment Hints

▪ Hint generator inputs

• Maximum stripe size

• Number of data shards

• Estimated size of next batch of
data elements (DE)

▪ Data elements are laid out
within the bounds of the
hints

• Unused space is padded out

• If the batch size is less than a
stripe, we assume a dynamic
stripe resizing.

• Overhead to ensure space for padding

Max Stripe (10 MiB) Data Shards (4)

Stripe Unit Hint Generator

DE Batch Size
DE SZ >= stripe

true false

(10/4) = 2.5 MiB
(batch sz+

overhead)/4

Stripe Hints

Intel Confidential 10

Layout Example

Hint Generator

Writer

layout parameters

batch sz

p

a

d

p

a

d

p

a

d

Alignment

Metadata

1) Generate Stripe
Alignment Hints

2) Fill areas with
data elements and
padding

3) Save padding
offsets as metadata

4) Write stripe to
storage

Intel Confidential 11

Proof of Concept: CSV Data Filtering
Aligned data stored in MinIO, then processed via parallel containers

Intel Confidential 12

Experimental Overview

▪ 4 Node (2+2) MinIO Deployment

▪ 1.7 GiB CitiBike dataset

• Used alignment hints to pad data

▪ Simple filter query that selects ~25k records

• Container service offers SQLite functionality

▪ Compare to built in S3-Select

• Using unaligned data

▪ Queries issued from separate node from MinIO

Intel Confidential 13

CSV Data Filtering + MinIO

Hint Generator

CSV Alignment App

MinIO-1

Raw CSV Data Aligned CSV Data

MinIO-2 MinIO-3 MinIO-4

PUT

Aligned

Data-1
Aligned

Data-2
Parity-1Parity-2

Filter

Service

Filter

Service

“SELECT * WHERE….”

Filter

Service
Filter

Service

▪ Aligning data we can reduce need for
coordination and enable simple
parallelism

▪ S3-Select (not shown here) requires
collation at a MinIO node

Intel Confidential 14

Results Overview

▪ It works!

• We can trivially parallelize many
filtering operations

▪ Compared to built in filtering,
significantly reduces data
movement

• Will vary on selectivity

• Some collation may still be needed,
e.g. a SUM

▪ Low overhead (for CSV)

• ~8 KiB for padding and extra metadata

1

10

100

1000

10000

App

Node

 Node 1 Node 2 Node 3 Node 4

M
iB

 D
a

ta
 M

o
v

e
m

e
n

t

Data Movements for CSV Query

S3 Select vs Co-Located Containers

MinIO S3 Select Co-Located Container

Intel Confidential 15

Lots More To Do!

▪ We started with a very simple example, a good start, but…

• What about more sophisticated data types?

▪ More native support for NDP

▪ Quality of service (QOS)

• We have a complex, distributed scheduling problem

Intel Confidential 18

Thanks for your time! Please reach out
with questions or comments!

19

