# I/O Acceleration from the Bottom Up

How will new SSD technologies shape future data serving infrastructures?

### Sangyeun Cho

Memory Business Samsung Electronics Co.

### A little bit of history

### **Areal Density Trend, Rotating Media**



### **Areal Density Trend, NAND Flash Media**



### **Today's NAND Flash Memory (in Production)**

|                       | TLC                   | TLC QLC                  |            |  |
|-----------------------|-----------------------|--------------------------|------------|--|
| Die Capacity          | 512Gb                 | 1Tb                      | 64Gb       |  |
| Areal Density         | 5Gbit/mm <sup>2</sup> | 7.53Gbit/mm <sup>2</sup> | -          |  |
| Page Read<br>Latency  | 45µs                  | 110µs                    | 3µs        |  |
| Program<br>Throughput | 82MB/s                | 18MB/s                   | 160MB/s    |  |
| Source                | ISSCC 2019            | ISSCC 2020               | ISSCC 2018 |  |

### **Demise of Performance Hard Drives**

- In 2016~2017, Samsung introduced industry's 1<sup>st</sup> enterprise SSDs built with 3D VNAND TLC
  - Status quo was to use planar SLC or eMLC
- Compelling MB/s, IOPS/\$, IOPS/GB, and AFR advantages
- A 2.5" SSD offered capacity points from 0.5~16TB

|                           | Performance HDD        | SSD (PM1633a, 2017)               |  |  |
|---------------------------|------------------------|-----------------------------------|--|--|
| Interface                 | Dual-port SAS (6G~12G) | Dual-port SAS (12G)               |  |  |
| Density                   | 250~600GB              | 0.5~16TB                          |  |  |
| Sequential<br>Performance | <400MB/s               | 1,200MB/s (Read); 900MB/s (Write) |  |  |
| IOPS                      | <1K                    | 200K (Read); 31K (Write)          |  |  |

# **Achieving High Density**



- When mass-produced in 2017, 16TB PM1633a was the world's highest capacity drive (yes, including HDDs)
- A novel "scale-out" architecture
  - Main controller + many sub-controllers
  - Industry's 1<sup>st</sup> use of LPDDR4 DRAM in enterprise storage



### Short-circuiting data to compute

### Moving Data vs. Moving Compute









#### **AWS AQUA Architecture**

### **Pushing Compute to the Far End**



### **Pushing Compute to the Far End**



[Cho, Park, Oh, Kim, Yi, and Ganger. "Active disk meets flash: a case for intelligent SSDs." ICS 2013]

### **Data Processing Throughput**



ISSD-XL: intelligent SSD with an accelerator (stream processor) per flash memory channel ISSD-800: intelligent SSD with an embedded processor per flash memory channel running @800MHz ISSD-400: intelligent SSD with an embedded processor per flash memory channel running @400MHz Host-\*: host server processing with I/O bandwidth of \*

### **Throughput Efficiency**



Solid lines capture "iso-performance" points with intelligent SSD processing (# channels) vs. host CPUs (# cores) Dotted lines capture "iso-performance" points with intelligent SSD processing + acceleration vs. host CPUs

[Cho, Park, Oh, Kim, Yi, and Ganger. "Active disk meets flash: a case for intelligent SSDs." ICS 2013]

### **Energy Efficiency**



host: host server processing

ISSD w/o SP: intelligent SSD with an embedded processor per flash memory channel ISSD w/ SP: intelligent SSD with a stream processing acceleration per flash memory channel

[Cho, Park, Oh, Kim, Yi, and Ganger. "Active disk meets flash: a case for intelligent SSDs." ICS 2013]

### **Near Data Processing with Biscuit**



- An intelligent SSD for In-Storage Compute (ISC)
- Strong emphasis on programmability
  - User-friendly C++11 based programming model
  - Dynamic loading of user binary onto SSD
  - Seamless support for hardware acceleration



[Gu et al. "Biscuit: A Framework for Near-Data Processing of Big Data Workloads." ISCA 2016]

## **Biscuit Programming Model**



- Biscuit follows a data-flow model
  - Data movement through ISC tasks determines their order of execution
  - On receiving all required inputs, an ISC task produces output and passes it to the next ISC tasks in the dataflow path
- A Biscuit program is composed of ISC tasks and a host-side program
  - An ISC task is a unit of work that runs on an ISC-enabled SSD
  - Both run concurrently in the SSD and the host, respectively



### **Biscuit: Basic Performance**

Due to the interface speed limit (PCle x4 in this case), SSD's internal bandwidth is ~30% higher



#### (Pointer Chasing Microbenchmark (sec))

|                   | #threads        | 0 | 6 | 12             | 18 | 24             |
|-------------------|-----------------|---|---|----------------|----|----------------|
| Exec.<br>time (s) | Conv<br>Biscuit |   |   | 152.5<br>123.3 |    | 155.0<br>123.5 |

Data inspection and I/O inside the SSD results in 10~20% reduction in latency + resilience against host CPU loads

### YourSQL on Biscuit

#### Traditional DB (MySQL)



#### YourSQL



#### Key design considerations

- Partitioning of host/ISC tasks
- Defining interfaces between the host and ISC tasks
- Optimized query planner for ISC
- Reorganized datapath for ISC

[Jo et al. "YourSQL: A High-Performance Database System Leveraging In-Storage Computing." VLDB 2016]

### **Evaluation Results**



### Samsung SmartSSD<sup>™</sup>



### Performance scales as we add SSDs

## **Moving Forward**



- "Computational Storage" is being standardized at SNIA/NVMe
- What target applications?
- What programming models?
- How to coordinate and maximize the use of all platform resources?
- Which data access mode?
- Which interconnect technologies?
- How to best utilize many computational storage devices?

### Getting the most from the media

### **Logical View of Physical Media**

 The LBA interface (introduced circa 1986) has helped straightforward switching to SSD



### **Logical View of Physical Media**



### **Fresh vs. Sustained Performance**



[Kang, Hyun, Maeng, and Cho. "The Multi-streamed Solid-State Drive." USENIX HotStorage, 2014]

### **Multi-Streamed SSD**



- Published at HotStorage 2014
- Standardized in 2017 (SAS/NVMe)
  - Linux support since 2017
- Product debut in 2016~2017

Simple, intuitive, additive model; Model concrete enough to predict effects

Model is still abstract; host can't control data placement on specific physical units

### **Open-Channel SSD**

- Philosophy-wise, OC-SSD aims to expose the media to the host software for direct management
  - Eliminate (parts of) FTL and give full control of data placement and access schedule to media units



["Open-Channel Solid State Drives NVMe Specification." Revision 1.2, April 2016] Host has complete control over data placement on NAND flash media (no LBA); Opportunities exposed for "cross-layer" optimizations between applications, file system, and FTL

Media idiosyncrasies underestimated;

Would you go back to CHS addressing from LBA?

### Zoned Namespace (ZNS) SSD

- SSD capacity is split into "zones" that are sequentially written
  - An SSD zone is analogous to that of shingled magnetic recording HDDs



Host has control over data placement on NAND flash media; Complicated media management resides within the SSD Host software must be aware of zones (SMR support is leveraged);

**Design trade-offs still being explored** 

## **Moving Forward**

#### Samsung Introduces Its First ZNS SSD With Maximized User Capacity and Enhanced Lifespan

Maximum available storage capacity and 3-4x longer lifespan enable server systems to run big data and AI applications more reliably and efficiently



- ZNS SSDs are available and are poised to offer strong use cases for large storage systems
  - Very concrete interface
  - Good fit for many-bit cell technologies
- Software availability and readiness remains a challenge for users
- More end-to-end software building and design trade-off studies are needed

### **Physical Isolation of Storage Resources**



per partition house keeping, ...

### Outro

- SSDs offer the density and performance required by modern workloads and infrastructures
  - In turn, SSD idiosyncrasies affect how systems are designed
- System changes are expected to realize ideas around SSDs
  - Short-circuiting of data and compute
  - NAND flash media aware storing/retrieving of data
  - Hardware-level isolation support for multi-tenancy
- Future SSDs offer system level optimization opportunities
  - Further end-to-end software building efforts are needed
  - Novel data-compute mapping/coordination ideas are wanted

# I/O Acceleration from the Bottom Up

How will new SSD technologies shape future data serving infrastructures?

### Sangyeun Cho

Memory Business Samsung Electronics Co.