
Unifying the Data Center Caching 

Layer - Feasible? Profitable?

Liana V. Rodriguez, Alexis Gonzalez, Pratik Poudel, 

Raju Rangaswami, and Jason Liu



Background

❖ Cloud Data Centers use different storage types 

(block, file, object , key-value)

❖ Caches typically target one storage type or one 

store instance or simply workloads running on a 

single host or VM

❖ New devices (3D-Xpoint, flash-based SSD 

technology) create new requirements for cache 

optimization

❖ High performance network fabrics are making 

remote data access more efficient (40 GigE, 

RoCE, InfiniBand, etc.)

Applications

Libraries

Big 

Data

Enterprise 

Apps

NoSQL Spark

TensorFlow

Interfaces

Distributed 

Caching

MapReduce

Pytorch

Block

FileObject

Key-Value

Memcached Redis

EC-Cache Alluxio

Storage

Systems

HDFS

NFS

Azure 

Blob

Google 

FS

Ceph

S3

Machine 

Learning



Outline

❖ Background

❖ Motivation

❖ Caching as a Service (CaaS)

❖ Preliminary Study

❖ Discussion and Future Work



Motivation

Host 2

Key-Value Store

Host 1

File System (HDFS)

App1

App2
App3

App4

Cloud Data Center

App5

Cache Fragmentation

Cache resources should be shared 

across storage systems and applications 

to decrease resource fragmentation

within the data center.



Motivation

Host 2

Key-Value Store

Host 1

File System (HDFS)

App1

App2
App3

App4

Cloud Data Center

App5

Cache Fragmentation

Cache resources should be shared 

across storage systems and applications 

to decrease resource fragmentation

within the data center.

Store Type Writes

Block 71%

File 9.8%

Object 40.5%

Key-value 22.5%

Write-dominant workloads are 

common in today’s cloud data 

centers. 

Cache Writes



Motivation

Host 2

Key-Value Store

Host 1

File System (HDFS)

App1

App2
App3

App4

Cloud Data Center

App5

Cache Fragmentation

Cache resources should be shared 

across storage systems and applications 

to decrease resource fragmentation

within the data center.

Store Type Writes

Block 71%

File 9.8%

Object 40.5%

Key-value 22.5%

Write-dominant workloads are 

common in today’s cloud data 

centers. 

Cache Writes

Unified Caching Layer

Applications

Cache Devices

Different devices implies different 

optimizations for cost-performance 

in the caching layer.



Throughput increases 10x in Local Cache and 7x in Remote Cache when cache 

hit-rate increases from 90% to 99%, using storage back-end latency of 1 ms. 

Similar improvements are seen with larger (10ms and 100ms) storage latencies.

Motivation



Throughput increases 1.24x with 20GB Remote cache with QD=8

Throughput increases 18.7x with 100GB Remote cache with QD=8

Motivation



Caching as a Service (CaaS)

A general distributed caching layer that abstracts 

and exposes all the available cache resources in 

the cloud for all types of storage systems.



Workload 

Generators

VMs, Containers,

Applications, etc.

Back-end Storage

All Storage I/O

Architecture



Workload 

Generators

VMs, Containers,

Applications, etc.

CaaS Client

Translation Layer

Translation Layer

Back-end Storage

All Storage I/O

Architecture



Workload 

Generators

VMs, Containers,

Applications, etc.

CaaS Client

Translation Layer

Translation Layer

Back-end Storage

All Storage I/O

Architecture

CaaS 

Data Server

CaaS 

Data Server

CaaS 

Data Server

CaaS 

Coordination Service

CaaS API



Workload 

Generators

VMs, Containers,

Applications, etc.

CaaS Client

Translation Layer

Translation Layer

Back-end Storage

All Storage I/O

CaaS Misses

& Writeback

Architecture

CaaS 

Data Server

CaaS 

Data Server

CaaS 

Data Server

CaaS 

Coordination Service

CaaS API



❖ CaaS API is designed around the concepts of Store and Clice (Cache-slice).

❖ Stores: Unit of access-protected cache provisioning 

❖ Clices: Unit of CaaS data access 

❖ CaaS Clients register with the Coordination Service

❖ CaaS Clients request clice locations using on-demand lookup calls

❖ CaaS Clients access data from CaaS Data Servers using Read, writeClean/Dirty

CaaS API
CaaS Coordination/Data Server API



❖ CaaS API is designed around the concepts of Store and Clice (Cache-slice).

❖ Stores: Unit of access-protected cache provisioning 

❖ Clices: Unit of CaaS data access 

❖ CaaS Clients register with the Coordination Service

❖ CaaS Clients request clice locations using on-demand lookup calls

❖ CaaS Clients access data from CaaS Data Servers using Read, writeClean/Dirty

CaaS API

❖ Write-back calls atomically write inter-dependent dirty data to storage back-end

CaaS Coordination/Data Server API

CaaS Client API



Experimental Setup
❖ 363 Block Storage Workloads.

￭ User home/project directories; Web-based servers; Webpage; Online course management system; 

Hardware monitoring; Source control; Web staging; Terminal; Web/SQL; Media; Test web; Firewall/web 

proxy; VMware VMs.

❖ 40 Gbit Ethernet network latency equal to 4µs. Back-end storage latency (AWS EBS) 

equal to 2ms

❖ ARC replacement algorithm in SSD-based Local Cache and CaaS

❖ Cache simulation used to obtain the number of Read Hits

❖ Writes in local cache are simulated misses while writes in CaaS are simulated hits 

❖ Writeback fault-tolerance in CaaS simulated using Primary-Backup replication with one 

leader and one follower 



Preliminary Study Model

Local Cache

Application

SSD Cache

Back-End 

Storage

(EBS)

Read Latency 

(5.3 µs)

Write/Miss

Latency 

(2 ms)



CaaS

CaaS

Client

CaaS

Data Server

Read Latency 

(13.3 µs)

Application

Back-End 

Storage

(EBS)

Miss

Latency 

(2 ms)

CaaS

CaaS

Client

CaaS

Data Server

Read Latency 

(13.3 µs)

Application

Back-End 

Storage

(EBS)

Miss

Latency 

(2 ms)

Preliminary Study Model

Local Cache

Application

SSD Cache

Back-End 

Storage

(EBS)

Read Latency 

(5.3 µs)

Write/Miss

Latency 

(2 ms)

Back-End 

Storage

(EBS)

Application

CaaS

Data Server

CaaS

Data Server

Write Latency 

(28 µs)

Miss

Latency 

(2 ms)

CaaS

Client



Write Latency up to 90%Read Latency up to 6%

Preliminary Study Results



I/O Latency 31% improvement

Preliminary Study Results



Preliminary Study Results

I/O Latency 36% improvement



❖ Writeable caching: Design a caching layer that provides the fault-tolerance and 

consistency requirements.

❖ Cache unit size: Select the clice size(s) in CaaS to optimize for both cache 

fragmentation and metadata overhead.

❖ Cache management: Design an allocation scheme and the corresponding 

eviction strategies.

❖ Data placement and Load balancing: Policies for data placement and load 

balancing decisions across different CaaS data servers.

❖ Service Level Agreements (SLAs): A distributed cache resource allocation 

algorithm that guarantees a user-defined level of Quality of Service (QoS).

Future Work



41

Thanks! ❖ lvald108@fiu.edu

❖ http://sylab-srv.cs.fiu.edu


