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Background

❖ Cloud Data Centers use different storage types 

(block, file, object , key-value)

❖ Caches typically target one storage type or one 

store instance or simply workloads running on a 

single host or VM

❖ New devices (3D-Xpoint, flash-based SSD 

technology) create new requirements for cache 

optimization

❖ High performance network fabrics are making 

remote data access more efficient (40 GigE, 

RoCE, InfiniBand, etc.)
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Applications
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Throughput increases 10x in Local Cache and 7x in Remote Cache when cache 

hit-rate increases from 90% to 99%, using storage back-end latency of 1 ms. 

Similar improvements are seen with larger (10ms and 100ms) storage latencies.

Motivation



Throughput increases 1.24x with 20GB Remote cache with QD=8

Throughput increases 18.7x with 100GB Remote cache with QD=8

Motivation



Caching as a Service (CaaS)

A general distributed caching layer that abstracts 

and exposes all the available cache resources in 

the cloud for all types of storage systems.
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❖ CaaS API is designed around the concepts of Store and Clice (Cache-slice).

❖ Stores: Unit of access-protected cache provisioning 

❖ Clices: Unit of CaaS data access 

❖ CaaS Clients register with the Coordination Service

❖ CaaS Clients request clice locations using on-demand lookup calls

❖ CaaS Clients access data from CaaS Data Servers using Read, writeClean/Dirty
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❖ Write-back calls atomically write inter-dependent dirty data to storage back-end
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Experimental Setup
❖ 363 Block Storage Workloads.

￭ User home/project directories; Web-based servers; Webpage; Online course management system; 

Hardware monitoring; Source control; Web staging; Terminal; Web/SQL; Media; Test web; Firewall/web 

proxy; VMware VMs.

❖ 40 Gbit Ethernet network latency equal to 4µs. Back-end storage latency (AWS EBS) 

equal to 2ms

❖ ARC replacement algorithm in SSD-based Local Cache and CaaS

❖ Cache simulation used to obtain the number of Read Hits

❖ Writes in local cache are simulated misses while writes in CaaS are simulated hits 

❖ Writeback fault-tolerance in CaaS simulated using Primary-Backup replication with one 

leader and one follower 
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Write Latency up to 90%Read Latency up to 6%

Preliminary Study Results



I/O Latency 31% improvement

Preliminary Study Results



Preliminary Study Results

I/O Latency 36% improvement



❖ Writeable caching: Design a caching layer that provides the fault-tolerance and 

consistency requirements.

❖ Cache unit size: Select the clice size(s) in CaaS to optimize for both cache 

fragmentation and metadata overhead.

❖ Cache management: Design an allocation scheme and the corresponding 

eviction strategies.

❖ Data placement and Load balancing: Policies for data placement and load 

balancing decisions across different CaaS data servers.

❖ Service Level Agreements (SLAs): A distributed cache resource allocation 

algorithm that guarantees a user-defined level of Quality of Service (QoS).

Future Work
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