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Tunable Parameters in Systems

• Thousands of tunable parameters in the Linux kernel

• Examples
❖Readahead size (# sectors)

❖ I/O scheduler (kyber, mq-deadline, bfq)

• Why are they important?
❖Affect performance and latency

❖Depends on workload

❖Especially for I/O subsystems
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[Cao et al. FAST’17,
Sehgal et al. FAST’10]



Adjusting Kernel Tunable Parameters
•  Why can’t we tune them manually?
❖ Highly depend on workloads

•  How frequently need to tune these parameters?
❖Must detect workload changes dynamically

•  Why is the tuning so complicated?
❖ Expertise: need to know impact of many parameters

❖ Inter-dependencies [Cao et al. FAST’17]
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•  Our approach
❖ KML framework: Machine Learning Framework for OSs and Storage Systems



KML Design Principles
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•  Library Design
❖Math and matrix operations

❖ Layers and loss functions

❖ Inference and training (DAG)

❖ Automatic differentiation
•Reducing computational overheads
❖ Floating-point operations & 

context-switches
•  Reducing memory overheads
❖ Asynchronous training

❖ Lock-free circular buffers for data 
collection



KML API
•  Can generate model to both user and 
kernel space
•  User space training & kernel space 
inference
•  Kernel space training and inference
❖ Reinforcement learning (future work)

❖More efficient data collection in kernel

•  KML’s programming model
❖ Versatility

❖ Safety

❖ Low-overhead
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Use Case: Readahead (Motivation)
•  What is the readahead problem?
❖ Tune with fadvise and madvise

•  How did we study the readahead problem?
❖ RocksDB on SSD & NVMe, four workloads

❖ 22 different readahead sizes (8 – 1024)

•  Data Collection
❖ Tracepoints via LTTng (add_to_page_cache, 

writeback_dirty_page)

❖mmap event extensions [Re-Animator, SYSTOR’20]

❖ Tracing overheads
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Use Case: Readahead (Implementation)
•  Data pre-processing & feature extraction
❖ Features

1. Number of tracepoints that were traced (transactions)
2. Cumulative moving average of page offsets 
3. Cumulative moving standard deviation of page offsets 
4. Mean absolute page offset differences for consecutive tracepoints
5. Current readahead value

❖ Pearson correlation, k-fold validation

•  Neural network model
❖Multi-class classification
❖ Trained on only readrandom, readseq, readreverse, and rw-random on NVMe
❖ Three linear layers connected with sigmoid activation function
❖ 10-fold validation: average accuracy 95.5%
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Evaluation: Performance Improvements
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Evaluation: Adaptability
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readseq readrandom

readreverse mixgraph

Overall 30% better throughput



Conclusion & Future Work
• KML can improve RocksDB I/O performance up to 2.3x
• Quickly adapts to changing workloads
• Apply to other storage subsystems and OS problems
❖ I/O schedulers
❖ NFS
❖ Page cache

• Extend KML framework
❖ Reinforcement Learning
❖ Computing DAGs with multiple threads
❖ Support arbitrary computation DAGs
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