
A Machine Learning Framework
 to Improve Storage System Performance

13th ACM Workshop on Hot Topics in Storage and
File Systems (HotStorage 2021)

Ibrahim “Umit” Akgun, Ali Selman Aydin,

Aadil Shaikh, Lukas Velikov, and Erez Zadok

Stony Brook University

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 1

Tunable Parameters in Systems

• Thousands of tunable parameters in the Linux kernel

• Examples
❖Readahead size (# sectors)

❖ I/O scheduler (kyber, mq-deadline, bfq)

• Why are they important?
❖Affect performance and latency

❖Depends on workload

❖Especially for I/O subsystems

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 2

[Cao et al. FAST’17,
Sehgal et al. FAST’10]

Adjusting Kernel Tunable Parameters
• Why can’t we tune them manually?
❖ Highly depend on workloads

• How frequently need to tune these parameters?
❖Must detect workload changes dynamically

• Why is the tuning so complicated?
❖ Expertise: need to know impact of many parameters

❖ Inter-dependencies [Cao et al. FAST’17]

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 3

• Our approach
❖ KML framework: Machine Learning Framework for OSs and Storage Systems

KML Design Principles

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 4

User

Kernel

I/O Workloads

Block device
layer

Memory Management
(filemap, page-writeback)

System calls
/ mmap

Data processing and
normalization

KML interface

readahead.ko

train/inference
data collection

Build_model
/ add_layer

instance

data
processing

train/
inference

update
readahead
(#sectors)

update
readahead

(#ra_pages)

Model
data

instance

app_init

kml.ko

Lock free
circular
buffer

KML
layers & loss

functions

Async. training

• Library Design
❖Math and matrix operations

❖ Layers and loss functions

❖ Inference and training (DAG)

❖ Automatic differentiation
•Reducing computational overheads
❖ Floating-point operations &

context-switches
• Reducing memory overheads
❖ Asynchronous training

❖ Lock-free circular buffers for data
collection

KML API
• Can generate model to both user and
kernel space
• User space training & kernel space
inference
• Kernel space training and inference
❖ Reinforcement learning (future work)

❖More efficient data collection in kernel

• KML’s programming model
❖ Versatility

❖ Safety

❖ Low-overhead

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 5

User

Kernel

I/O Workloads

readahead.ko

instance

training
data collection

 Train data

app_main

KML interface

train

Data processing and
normalization

build_model
/ add_layer

kml.a

readahead

save model []w

data
processing

[]w

[]w

Block device
layer

Data processing and
normalization

KML interface

inference
data collection

instance

inference

update
readahead
(#sectors)

update
readahead
(#pages)

Model
data

instance

app_init

 Trace data

Memory Management
(filemap, page-writeback)

load model

kml.ko

Use Case: Readahead (Motivation)
• What is the readahead problem?
❖ Tune with fadvise and madvise

• How did we study the readahead problem?
❖ RocksDB on SSD & NVMe, four workloads

❖ 22 different readahead sizes (8 – 1024)

• Data Collection
❖ Tracepoints via LTTng (add_to_page_cache,

writeback_dirty_page)

❖mmap event extensions [Re-Animator, SYSTOR’20]

❖ Tracing overheads

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 6

Use Case: Readahead (Implementation)
• Data pre-processing & feature extraction
❖ Features

1. Number of tracepoints that were traced (transactions)
2. Cumulative moving average of page offsets
3. Cumulative moving standard deviation of page offsets
4. Mean absolute page offset differences for consecutive tracepoints
5. Current readahead value

❖ Pearson correlation, k-fold validation

• Neural network model
❖Multi-class classification
❖ Trained on only readrandom, readseq, readreverse, and rw-random on NVMe
❖ Three linear layers connected with sigmoid activation function
❖ 10-fold validation: average accuracy 95.5%

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 7

Evaluation: Performance Improvements

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 8

Evaluation: Adaptability

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 9

readseq readrandom

readreverse mixgraph

Overall 30% better throughput

Conclusion & Future Work
• KML can improve RocksDB I/O performance up to 2.3x
• Quickly adapts to changing workloads
• Apply to other storage subsystems and OS problems
❖ I/O schedulers
❖ NFS
❖ Page cache

• Extend KML framework
❖ Reinforcement Learning
❖ Computing DAGs with multiple threads
❖ Support arbitrary computation DAGs

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 10

A Machine Learning Framework
 to Improve Storage System Performance

13th ACM Workshop on Hot Topics in Storage and
File Systems (HotStorage 2021)

Ibrahim “Umit” Akgun, Ali Selman Aydin,

Aadil Shaikh, Lukas Velikov, and Erez Zadok

Stony Brook University

July 7, 2021 A Machine Learning Framework to Improve Storage System Performance (ACM HotStorage 2021) 11

Q&A

