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Key-Value Store (KV-Store)

• Key-Value Store (KV-Store) is a type of NoSQL database.
• KV-Store uses simple Key-Value (KV) interface to store/retrieve data.
• Host-side KV-Store 

• E.g., RocksDB, LevelDB, …
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Key-Value Solid-State Drive (KVSSD)

• KVSSD runs storage engine of KV-Store on the SSD.
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reported[1].

Key-Value Solid-State Drive (KVSSD)

• KVSSD runs storage engine of KV-Store on the SSD.
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MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].
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• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].
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Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support.
• Multi-tenancy is an architecture that can host multiple DB instances of tenants on a server.
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[4] pClock: An Arrival Curve Based Approach for QoS Guarantees in Shared Storage Systems, ACM SIGMETRICS, 2007.



Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support. 
• To this end, namespace isolation is supported.
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Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support.
• To this end, namespace isolation is supported.
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Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance 
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.
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Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance 
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

31<Global-shared single LSM-tree>

KV

Upper level

Lower level

Read is too slow.Read is too slow.Read is too slow.

LSM-tree
search order

Current LSM-tree based KVSSDs have difficulty in providing the promised read performance that 
storage device can provide.

Reason 2: During LSM-tree 
search, BF loads are 

performed several times.

Reason 1: Most tenants’ 
KV data will be indexed at 

upper level.



Motivation Experiment

• Configuration
• iLSM-SSD[1], recent LSM-tree based KVSSD.
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• KV tenant Read Scenarios
• (1): When only tenant x’s KV data occupies a LSM-tree.
• (2): When LSM-tree is shared by tenant x’s and y’s

own KV data at the same time.
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• Result & Analysis (from the tenant x’s perspective)
• Response time: (1) << (2).
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Motivation Experiment

• Configuration
• iLSM-SSD[1], recent LSM-tree based KVSSD.
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• KV tenant Read Scenarios
• (1): When only tenant x’s KV data occupies a LSM-tree.
• (2): When LSM-tree is shared by tenant x’s and y’s

own KV data at the same time.

• Result & Analysis (from the tenant x’s perspective)
• Response time: (1) << (2).
• Reason 1: 67% of tenant x’s KV data are indexed at L2.
• Reason 2: # of BF loads are increased by 77%.
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Design Goals

• Therefore, we have the following design goals for multi-tenant KVSSD.

(1) Multi-tenant KVSSD supports namespace isolation.

(2) Multi-tenant KVSSD minimizes read performance overhead for performance isolation.
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We propose a multi-tenant Iso-KVSSD, satisfying these two goals.



Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.
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• Iso-KVSSD employs per-namespace dedicated LSM-tree design.
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Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.
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Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.
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Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.
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MemTable provisioning per-namespace 
requires additional DRAM space.

It prevents KV data from 
being indexed at upper 
level of LSM-tree.
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• Iso-KVSSD controls access based on user’s namespace information.
• Per-namespace LSM-tree design reduces KV data’s access latency.

Only few KV data 
are indexed at 
shared regions.



Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.
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Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.
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during existing 

background compaction.



Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

45

New SSTableVictim SSTable

① Lvl.0 Victim 
SSTable Load

L G
D Q

B K
P E

Lvl.0 Victim 
SSTable

② Key
Range 
Check

B ~ L G ~ P

D ~ K Q

⋮ ⋮ ⋮ ⋮

CSegregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

A Z A B
C D

KV data is isolated 
during existing 

background compaction.



Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.
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Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.
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Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.
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Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

49

New SSTableVictim SSTable

③ Lvl.1 Victim 
SSTable Load

① Lvl.0 Victim 
SSTable Load

④Compaction 
per namespace

⋮ ⋮ ⋮ ⋮

C B
E

Segregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

C
L

⑤ New 
SSTable
Write

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

C A Z

Lvl.1 Victim 
SSTable

② Key
Range 
Check

L G
D Q

B K
P E

Lvl.0 Victim 
SSTable

B ~ L G ~ P

D ~ K Q

B
E

C
L

A G
P Z

D K Q

A Z A BA G
C D

QD K
P Z

Namespace Isolation mechanism substantially segregates KV data without 
perceivable overhead.
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Experimental Setup

• Prototyped Iso-KVSSD on FPGA-based Cosmos+ OpenSSD.
• 1TB NAND memory, 1GB DDR3 DRAM, ARM Cortex-A9 processors.

• Configuration
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• Workloads
• Put() or Get() only synthetic workloads.

• Comparison
• Baseline: iLSM-SSD with global-shared LSM-tree.
• Iso-KVSSD: iLSM-SSD with per-namespace LSM-tree.
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Throughput Comparison
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• Level distribution of where KV data is indexed in the LSM-trees.

Impact of Per-namespace LSM-tree: Level Distribution
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Per-namespace LSM-tree significantly reduces level depth at which KV data is
indexed in the LSM-tree.



• Level distribution of where KV data is indexed in the LSM-trees.

Impact of Per-namespace LSM-tree: Level Distribution
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Per-namespace LSM-tree significantly reduces level depth at which KV data is
indexed in the LSM-tree.



• Level distribution of where KV data is indexed in the LSM-trees.

Impact of Per-namespace LSM-tree: Level Distribution
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• The number of Bloom filter (BF) loads during LSM-tree search

Impact of Per-namespace LSM-tree: # of Bloom Filter Loads
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Per-namespace LSM-tree significantly reduces the number of BF loads during
KV data search process.



Conclusion

• Iso-KVSSD with per-namespace LSM-tree design
• Identifies the user’s namespace information for namespace isolation.
• Manages the KV data using per-namespace LSM-tree design for performance isolation.

• Provides strict view showing only the KV data corresponding to each user’s namespace.
• Offers 2.9x higher per-tenant read throughput and 2.8x lower per-tenant read response time than the 

baseline with a global-shared LSM-tree.
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