Isolating Namespace and Performance in Key-Value SSDs for
Multi-tenant Environments

Donghyun Min and Youngjae Kim
Sogang University, South Korea

5 o Ok
Qi

W,

®§2

[

\

DISCOS

ﬂ LABORATORY The 13" ACM Workshop on Hot Topics In Storage and
File Systems (HotStorage’ 21, July 27-28)

SOGANG
8

UNIVERSITY

I Key-Value Store (KV-Store)

» Key-Value Store (KV-Store) is a type of NoSQL database.
» KV-Store uses simple Key-Value (KV) interface to store/retrieve data.

 Host-side KV-Store
* E.g., RocksDB, LevelDB, ...

.mongo RocksDB ‘ LEVELDB

A

2

SOGANG
g UNIVERSITY

I Key-Value Solid-State Drive (KVSSD)

e KVSSD runs storage engine of KV-Store on the SSD.

Key Value Application e Program
|
Host KV-Store Storage Engine

“ RockspB 0 LEVELDB
|

Ext
File System

Block Layer &
Block Device Driver

Block Device
(SSD)
3

SOGANG
g UNIVERSITY

I Key-Value Solid-State Drive (KVSSD)

e KVSSD runs storage engine of KV-Store on the SSD.

800
< 700
600
500
400
300

Average Latency (usec
N
8

—
o
o O

@ User library
@ fdatasync syscall

C— write syscall
Block level /0

Key Value Application e Program
]

Host KV-Store Storage Engine

-:5-':":'::' ROCkSDB ‘ LEVELDB

N\

RocksDB WiscKey

NVMe SSD

Host file system
overhead has been
reported!l,

Ext

File System

Block Layer &
Block Device Driver

b 4

Block Device
(SSD)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

JA SOGANG

<& UNIVERSITY

I Key-Value Solid-State Drive (KVSSD)

e KVSSD runs storage engine of KV-Store on the SSD.

@ User library
@ fdatasync syscall

C— write syscall
Block level /0

Key Value Application

Program

800
700~
600 -
500
400
300
200

Average Latency (usec)

100

Host KV-Store Storage Engine
& LEVELDB

“* RocksDB

KV API Library

RocksDB WiscKey

NVMe SSD

Host file system
overhead has been
reported(,

Ext

File System

File system

Block Layer &
Block Device Driver

High throughput
Low latency, WAF, RAF

KV Device Driver

b 4

U

Block Device
(SSD)

KV Device
(KVSSD)

I 5

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

SOGANG
g UNIVERSITY

I Key-Value Solid-State Drive (KVSSD)

e KVSSD runs storage engine of KV-Store on the SSD.

T —— Key Value Application f Program

l KV API Library

/

. \/

<Log-Structured Merge-tree ¢

High throughput
Low latency, WAF, RAF

Write-optimized
4 .

(LSM-tree) based KVSSD>

» KVSSD (DATE’ 18),
* iLSM-SSD (MASCOTS’ 19),
* PinK (USENIX ATC’ 20)

(Append-manner) l
- v pr— @

(KVSSD)

KV Device Driver

LSM-tree indexer

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
<& UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

MemTable
DRAM
Flash
Lvl. 0 | SSTable Value Log
< offset >

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

Put (key k, value v)

MemTable
DRAM
Flash
Lvl. 0 | SSTable Value Log
< offset >

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

Put (key k, value v)

0 Value Log
MemTable Append
DRAM
Flash
Lvl.0 | SSTable Value Log
< offset >

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset > Put (key k, value v)
9 MemTable
Update
0 Value Log
MemTable Append
DRAM
Flash
Lvl. 0 | SSTable Value Log

< offset >

10

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

DRAM

< key k, value offset >

19 MemTable

Update

MemTable

Put (key k, value v)

0 Value Log
Append

Flash

Lvl. O

l 9 SSTable

" Flush

SSTable

-
-
-
-
-
-
-
-

BloomFilter
> <

Meta

. (Key, ?ffset))

~
\h—’,

7
/

-~. Value Log
v

/

< offset >

11

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset >

Put (key k, value v)

9 MemTable
Update
o Value Log
MemTable Append
DRAM 9_ SSTable
Flash Flush — __.--- BloomFilter
- ” <
Lvl.0 | SSTable) Mgfc? t o7~ Valuelog
--------- \(<Y, . set) J » <offset>
Lvl. 1 SSTable SSTable

Lvl. 2 SSTable SSTable SSTable

12

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.

[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset > Put (key k, value v)
9 MemTable
Update
o Value Log
MemTable Append
DRAM 9_ SSTable
Flash Flush
Lvl. 0 | SSTable Value Log
< offset >

% Lvl. 1 | SSTable SSTable

Lvl. 2 SSTable SSTable SSTable 3

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. 6 UNIVERSITY
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset >

l@ MemTable

Put (key k, value v)

Update
0 Value Log
MemTable Append
DRAM 9_ SSTable
Flash Flush
Lvl.0 | SSTable vl e
< offset >

% Lvl. 1

g SSTable
/i

SSTable

Overlapped ———L .~

key range \ 7
Lvl. 2 SSTable SSTable ”
|
[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. SOGANG

[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

<& UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset > Put (key k, value v)
l@ MemTable
Update
0 Value Log
MemTable Append
DRAM 9_ SSTable
Flash Flush
vl 0 SSTable @1 Read for Value Log
' Compaction s
o1r1se
1| :, !
|
%Lvl. 117ssTable |, | SSTable
|
Overlapped '_\._' ! :
key range \ 777 :
Lvl. 2 % B ssTable SSTable .
I |

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. 6 UNIVERSITY
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset > Put (key k, value v)

@ MemTable
Update

e Tab] New 0 ValuedLog
emlable SSTable Appen
DRAM

l 9 SSTable

Flash Flush
. 0 SSTable O Read for Value Log
' Compaction
< offset >
[V :
%Lvl. 117ssTable |, | SSTable
I
Overlapped ——L } :
key range \ T :
Lvl. 2! % l SSTable SSTable r
| 1

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. 6 UNIVERSITY
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset > Put (key k, value v)

9 MemTable
Update

e Tab] New o ValuedLog
emlable SSTable Appen
DRAM

l 9 SSTable

Flash "~ Flush

O Read for
Compaction

lvl.0 | SSTable Value Log

< offset >

| I
[V !
% Lvl. 1 ? SSTable |1 | SSTable O> \rite for
i | .
Overlapped ——' =" | Compaction

key range ; Tz :
Lvl. 2! l SSTable SSTable r

I |

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. R SOGANG

[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016. 6 UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

< key k, value offset > Put (key k, value v)

9 MemTable
Update

e Tab] New o ValuedLog
emlable SSTable Appen
DRAM

l 9 SSTable

Flash) Flush

lvl.0 | SSTable Value Log

< offset >

Lvl. 1 SSTable 0> Write for

Compaction

Lvl. 2 SSTable SSTable

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

18

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

Get (key k)
@ MemTable
Search
MemTable
DRAM
Flash
Lvl. 0 | SSTable Value Log
< offset >

Lvl. 1 SSTable

New
Lvl. 2 SSTable SSTable SSTable 19

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. 6 UNIVERSITY
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

Get (key k)
@ MemTable
Search
MemTable
DRAM —
@ SSTable
Flash 4 Search
Lvl.0 | SSTable Value Log
< offset >

Lvl. 1 SSTable

New
Lvl. 2 SSTable SSTable SSTable 50

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020. 6 UNIVERSITY
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

Get (key k)
@ MemTable
Search
MemTable
DRAM = i
(2) SSTable BF and key matching
Flash < oearch ___---7 BloomFilter
- ” S
Lvl.0 | SSTable) Mgfc? t o7~ Valuelog
--------- \ (Key, . set) J » <offset>
Lvl. 1 SSTable
Lvl. 2

New
SSTable SSTable SSTable 51

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.

[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Log-Structured Merge-tree (LSM-tree) in KVSSD

* Several KVSSDs!! 2l are implemented based on key-value separated LSM-tree indexing structure!3l,

Get (key k) < value >
@ MemTable 2\
Search
(3) Value
MemTable Retrieval
DRAM = i
(2) SSTable BF and key matching
Flash < oearch ___---7 BloomFilter
- - <
Lvl.0 | SSTable) Mgfc? t o7~ Valuelog
--------- \(<Y, . set) J » <offset>
Lvl. 1 SSTable
Lvl. 2 SSTabl SSTabl New
Vi aDie aDie SSTable 22

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.

[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD

e Problem 1: Lack multi-tenancy and namespace isolation support.
* Multi-tenancy is an architecture that can host multiple DB instances of tenants on a server.

® o o
T T -

— —

— —

<Single-tenant vs. Multi-tenant> 23

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD

e Problem 1: Lack multi-tenancy and namespace isolation support.
* Multi-tenancy is an architecture that can host multiple DB instances of tenants on a server.

m Performance
Oo,

®
dh
e

I

VS.

Each tenant has their own
dedicated server!®.

(@0 L be
((Unif 8 B

<Single-tenant vs. Multi-tenant> 24

[4] pClock: An Arrival Curve Based Approach for QoS Guarantees in Shared Storage Systems, ACM SIGMETRICS, 2007. R SOGANG
<& UNIVERSITY

I Problems of the current LSM-Tree based KVSSD

* Problem 1: Lack multi-tenancy and namespace isolation support.
e To this end, namespace isolation is supported.

ON -

o
0

~ |

-_— @ @ @ Logically
Shared separated KV data
storage <Namespace isolation>

25

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD

e Problem 1: Lack multi-tenancy and namespace isolation support.
e To this end, namespace isolation is supported.

ON -

o
o

~ |

-_— @ @ ° Logically
Shared separated KV data
storage <Namespace isolation>

However, current LSM-tree based KVSSDs lack design and implementation

for namespace isolation.

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD (Cont.)

* Problem 2: Limited per-tenant read performance
* Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

| 4 4
@ dh
@

Lower level

O

Upper level

<Global-shared LSM-tree>

27

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD (Cont.)

* Problem 2: Limited per-tenant read performance
* Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

Read is too slow.

Lower level

LSM-tree
search order

Upper level

<Global-shared LSM-tree> e

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD (Cont.)

* Problem 2: Limited per-tenant read performance
* Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

Read is too slow.

Reason 1: Most tenants’
Lower level KV data will be indexed at

upper level.

LSM-tree
search order

Upper level

<Global-shared LSM-tree> .

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD (Cont.)

* Problem 2: Limited per-tenant read performance
* Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

Read is too slow.

2 Reason 1: Most tenants’
@ Lower level KV data will be indexed at
upper level.
Reason 2: During LSM-tree O L5M-tree o
search, BF loads are search order
performed several times.
Upper level

<Global-shared LSM-tree>

30

SOGANG
g UNIVERSITY

I Problems of the current LSM-Tree based KVSSD (Cont.)

* Problem 2: Limited per-tenant read performance

* Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

Read is too slow.

Reason 2: During LSM-tree
search, BF loads are
performed several times.

LSM-tree

search order

Reason 1: Most tenants’
KV data will be indexed at

upper level.

Current LSM-tree based KVSSDs have difficulty in providing the promised read performance that

storage device can provide.

SOGANG
g UNIVERSITY

I Motivation Experiment

e Configuration
e iLSM-SSD!! recent LSM-tree based KVSSD.
* Key size: 8B, Value size: 1KB.
» # of KV requests issued (per tenant): 1M.

« KV tenant Read Scenarios "T'@
: When only tenant x’s KV data occupies a LSM-tree.
* (2): When LSM-tree is shared by tenant x’s and y’s
own KV data at the same time.

32

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019. R SOGANG
<& UNIVERSITY

I Motivation Experiment

Long response time

100

* Configuration o & & |
e iLSM-SSD!!] recent LSM-tree based KVSSD. _ E
X 5 1
» Key size: 8B, Value size: 1KB. E wl
» # of KV requests issued (per tenant): 1M. R]
20+ “@= One Tenant 1
I = Two Tenants |

* KV tenant Read Scenarios "T'@ N/ ol
: When only tenant x’s KV data occupies a LSM-tree. 1000 20005::2?1;02?5)5000 6000
* (2): When LSM-tree is shared by tenant x’s and y’s <Response time for read>

own KV data at the same time.

* Result & Analysis (from the tenant x’s perspective)
* Response time: (1) << (2).

33

PR SOGANG

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
<& UNIVERSITY

I Motivation Experiment

e Configuration

e iLSM-SSD!! recent LSM-tree based KVSSD.

* Key size: 8B, Value size: 1KB.

» # of KV requests issued (per tenant): 1M.

e KV tenant Read Scenarios "T'@

: When only tenant x’s KV data occupies a LSM-tree.
* (2): When LSM-tree is shared by tenant x’s and y’s
own KV data at the same time.

* Result & Analysis (from the tenant x’s perspective)

* Response time: (1) << (2).

e Reason 1: 67% of tenant x’s KV data are indexed at L.
e Reason 2: # of BF loads are increased by 77%.

CDF (%)

CDF (%)

100

100

Long response time

80
60 -
40 -

20F

& S/ ©

*©= One Tenant *
== Two Tenants |

0 L ! L f L L L L L L L L L L
1000 2000 3000 4000 5000 6000

Latency (us)
<Response time for read>

80
60
40 -

20|

2/3 data is indexed
at higher level.

©= One Tenant
=@®= Two Tenants
&

L | L L L L
&5\ Q@& & Wa?& ﬁ)%%&
VA . \)4 . \)4 o \)4 o

<Level of accessed data> 34

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

SOGANG
g UNIVERSITY

I Design Goals

* Therefore, we have the following design goals for multi-tenant KVSSD.
(1) Multi-tenant KVSSD supports namespace isolation.

(2) Multi-tenant KVSSD minimizes read performance overhead for performance isolation.

35

SOGANG
g UNIVERSITY

I Design Goals

* Therefore, we have the following design goals for multi-tenant KVSSD.
(1) Multi-tenant KVSSD supports namespace isolation.

(2) Multi-tenant KVSSD minimizes read performance overhead for performance isolation.

We propose a multi-tenant Iso-KVSSD, satisfying these two goals.

SOGANG
g UNIVERSITY

Per-namespace dedicated LSM-tree

* |so-KVSSD employs per-namespace dedicated LSM-tree design.

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command
; MemTable '
Key [offset | | o [oxi0 3 | o
Namespace g Namespace Namespace A
DRAM
Meta 20 | oxaC || 75 | OxAF
SSTable e | [O Flash
- ey Offset
Shared Namcspace 890 [oxiia || 75 [ox14
Lvl. 0 a a
I [I
I I I
Segregated I I GD I DD D
Lvl. 1 I 1 1 DD
I I I
1 1 / 1 / -
Lvl. 2,3, .. ‘ LSM-tree A o LSM-tree B o LSM-tree C l/ LSM-tree D
Namespace A Namespace B Namespace C Namespace D

Pooled
allocation

[1
Flash Memory u |
Pool

37

SOGANG
g UNIVERSITY

Per-namespace dedicated LSM-tree

* |so-KVSSD employs per-namespace dedicated LSM-tree design.

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command
; MemTable '
Key [offset | | o [oxi0 3 | o
Namespace g Namespace Namespace A
DRAM
Meta 20 | oxaC || 75 | OxAF
SSTable e | [O Flash
- ey Offset
Shared E— 890 [oxiia || 75 [ox14
Lvl. 0 a a
I [I
I I I
Segregated I I GD I DD D
Lvl. 1 I 1 1 DD
I I I
1 1 / 1 / -
Lvl. 2,3, .. ‘ LSM-tree A o LSM-tree B L LSM-tree C l/ LSM-tree D
Namespace A Namespace B Namespace C Namespace D

Pooled
allocation

[1
Flash Memory u |
Pool

38

SOGANG
g UNIVERSITY

Per-namespace dedicated LSM-tree

* |so-KVSSD employs per-namespace dedicated LSM-tree design.

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command
; MemTable '
Key [offset | | o [oxi0 3 | o
Namespace g Namespace Namespace A
DRAM
Meta 20 | oxaC || 75 | OxAF
SSTable e | [O Flash
- ey Offset
Shared Namcspace 890 [oxiia || 75 [ox14
Lvl. 0 [])
[1 [
I I I
Segregated I I GD I DD D
Lvl. 1 I 1 1 DD
| | |
1 1 / 1 / -
[, 7 2, e ‘ LSM-tree A o LSM-tree B o LSM-tree C l/ LSM-tree D
Namespace A Namespace B Namespace C Namespace D

Pooled
allocation

[1
Flash Memory u |
Pool

39

SOGANG
g UNIVERSITY

Per-namespace dedicated LSM-tree

* |so-KVSSD employs per-namespace dedicated LSM-tree design.

Get (key k, namespace ns)

U

¥

Put (key k, value v, namespace ns) via NSID region of NVMe command

MemTable MemTable provisioning per-namespace
Only few KV data o o] [o T om requires additional DRAM space.
are indexed at Namespace | Namespace Namespace A
shared regions. DRAM
Meta 20 | oxaC || 75 | OxAF
SSTable 1= | a () Flash
ey Offset
Shared Namespace 890 J—OXIM s I Oxl4
- Lo a G
| | |
| I |
Segregated I I GD I DD D
Lvl. 1 I 1 1 DD
| 1 |
1 : ! / : ! / :
L. 2,3, .. LSM-tree A LSM-tree B LSM-tree C l / LSM-tree D
Namespace A Namespace B Namespace C Namespace D
|
Flash Memory u h | “ /75;:;"
Pool 40
PR SOGANG

<& UNIVERSITY

Per-namespace dedicated LSM-tree

* |so-KVSSD employs per-namespace dedicated LSM-tree design.

Get (key k, namespace ns)

U

¥

Put (key k, value v, namespace ns) via NSID region of NVMe command

MemTable MemTable provisioning per-namespace
Only few KV data o o] [o T om requires additional DRAM space.
are indexed at Namespace | Namespace Namespace A
shared regions. DRAM
Meta 20 | oxaC || 75 | OxAF
SSTable 1= | a o Flash
ey Offset
Shared Namespace 890 J—OXIM s I Oxl
- .o a g
I i I It prevents KV data from
| q .
Segregated : o (] : 88 O being indexed at upper
tvl- 1 ! ! ! level of LSM-tree.
/ 4
! H ! H ! H
Lvl. 2,3, .. LSM-tree A LSM-tree B LSM-tree C l / LSM-tree D
Namespace A Namespace B Namespace C Namespace D
[1
Flash Memory u h | ’ /75:;‘;‘;"

Pool a1
PR SOGANG

<& UNIVERSITY

Per-namespace dedicated LSM-tree

* |so-KVSSD employs per-namespace dedicated LSM-tree design.

Only few KV data
are indexed at
shared regions.

Get (key k, namespace ns)

U

¥

Put (key k, value v, namespace ns) via NSID region of NVMe command

MemTable MemTable provisioning per-namespace
ey | ofiset | [5 | oao 5 [on requires additional DRAM space.
Namespace g Namespace Namespace A
DRAM
Meta 20 | oxaC || 75 | OxAF
SSTable 3 o] a () Flash
ey Offset
Shared P —, 890 J_ox114 75 | oxi4
_— Lvl. 0 a O
I i I — It prevents KV data from
| q .
Segregated : o (] : 88 O being indexed at upper
tid : : ! > level of LSM-tree.
! . ! / H ! // N
230 LSM-tree A LSM-tree B LSM-tree C 1 / LSM-tree D
Namespace A Namespace B Namespace C Namespace D

* |so-KVSSD controls access based on user’s namespace information.

* Per-namespace LSM-tree design reduces KV data’s access latency.

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

Tt
: I Victim SSTable D New SSTable
1 1
| J— |

DRAM
Flash
Shared
Lvl. 0
1 1 1
[ty I I
Segregated I I I
Lvl. 1 I I ! @
1 1 1
1 [1 /
Lvl. 2, 3, ..))))
LSM-tree 1 LSM-tree 2 LSM-tree 3 LSM-tree 4
L Y J L Y J L Y J \ Y)
Namespace 1 Namespace 2 Namespace 3 Namespace 4 43

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

Tt
: I Victim SSTable D New SSTable
1 1
| J— |

KV data is isolated
during existing
background compaction.

@ Lvl.0 Victim
DRAM SSTable Load
Flash
Shared
Lvl. 0
1 1 1
[ty I I
Segregated I I I
Lvl. 1 I I ! @
1 1 1
1 [1 /
Lvl. 2, 3, ..))))
LSM-tree 1 LSM-tree 2 LSM-tree 3 LSM-tree 4
Namespace 1 Namespace 2 Namespace 3 Namespace 4 44

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

TTT7S
Lvl.0 Victim i : Victim SSTable D New SSTable
SSTable R

KV data is isolated 0K
during existing 28 09
background compaction. @ key B . @ G
Range
D~K
Check O O o
@ Lvl.0 Victim
DRAM SSTable Load
Flash
Shared
Lvl. 0
N 1 I
I I I
Segregated I I I
Lvl. 1 I I ! @
| | |
| | | /
L. 2, 3, .. ' ‘ ' '
LSM-tree 1 LSM-tree 2 LSM-tree 3 LSM-tree 4
Namespace 1 Namespace 2 Namespace 3 Namespace 4 45

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

P
Lvl.0 Victim Lvl.1 Victim : 1 Victim SSTable D New SSTable
1 1
SSTable SSTable ===t
KV data is isolated B @ i:
during existing @8 09 R S
background compaction. @ key B . @ G
Range . N\
Check O o
(@ Lvl.0 Victim (3 Lvl.1 Victim
DRAM SSTable Load SSTable Load
Flash L
shared) BB
vo B8 DO ||
| R Dy pup— |
I 1 I
[I I
Segregated I I I
Lvl. 1 I I ! @
| | |
| | | /
.23, .. ' ‘ ' :
LSM-tree 1 LSM-tree 2 LSM-tree 3 LSM-tree 4
Namespace 1 Namespace 2 Namespace 3 Namespace 4 46

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

P
Lvl.0 Victim Lvl.1 Victim i E Victim SSTable D New SSTable
SSTable SSTable h--=-!

KV data is isolated B {C I i: | > Alc I D
during existing Q8 09 L) L i ;
background compaction @ key (@)compaction
° B~L G~P
Range . o . per namespace
Check O a
(@ Lvl.0 Victim (3 Lvl.1 Victim
DRAM SSTable Load SSTable Load
Flash L
shared) BB
wo B8 D ||
| R Dy pup— |
I 1 I
[I I
Segregated I I I
Lvl. 1 I I ! @
| | |
| | I /
tvi-2,3,.. LSM-t;'ee 1 LSM-tree 2 LSM-tree 3 LSM-tree 4
Namespace 1 Namespace 2 Namespace 3 Namespace 4 47

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

Lvl.0 Victim Lvl.1 Victim
SSTable SSTable
KV data is isolated 0« o8 08 > |
during existing @8 09 R S @ Compaction
background compaction. @ key B . @ cr per namespace
Range “« @ a L @ New
Check SSTable
(@) Lvl.0 Victim (3 Lvl.1 Victim Write
DRAM SSTable Load SSTable Load
Flash L
shared (3K B
Lvl.0 :ﬂ: :@@:
| R Dy pup— |
| |
""" I
Segregated [@ : @
Lvl. 1 ! @@
I I
I I /
tvl. 2,3, . LSM-t;'ee 1

LSM-tree 2

LSM-tree 3 LSM-tree 4

Namespace 1

T

Namespace 2

Namespace 3

Y T

Namespace 4 48

SOGANG
g UNIVERSITY

I Namespace Isolation Mechanism

* Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

Victim SSTable D New SSTable

Lvl.0 Victim Lvl.1 Victim !
SSTable SSTable ===t
KV data is isolated 0« o8 08 > |
during existing @8 g R @ :
) @ Key Compaction
background compaction. range B . @ c-r per namespace Gn
heck O o~k @ a N ew
Chec SSTable
(@) Lvl.0 Victim (3 Lvl.1 Victim Write
DRAM SSTable Load SSTable Load
Flash L
shared (3K B
Lvl. 0
_____________ I I
|
Segregated [@ : @
Lvl. 1 ! @@
I I
1 1

Namespace Isolation mechanism substantially segregates KV data without
perceivable overhead.

SOGANG
g UNIVERSITY

Experimental Setup

Prototyped Iso-KVSSD on FPGA-based Cosmos+ OpenSSD.
e 1TB NAND memory, 1GB DDR3 DRAM, ARM Cortex-A9 processors.

Configuration
* Key size: 8B, Value size: 1KB.
* # of KV requests issued (per tenant): 1M.

Workloads
e Put() or Get() only synthetic workloads.

Comparison
* Baseline: iLSM-SSD with global-shared LSM-tree.
* |so-KVSSD: iLSM-SSD with per-namespace LSM-tree.

50

SOGANG
g UNIVERSITY

I Throughput Comparison

% 5007_ T L A % 40007 L L A R
2 400!l [Baseline] v [[Baseline
= 2 *
Q. i 7 Q.
5 00 1.1x h : :
3 [3 2000 -] -
= 200F - B= I less than 1% |
E : 2.9x t: I overhead |
§ 100 ’—ﬂ 2.3x |mprovement § 1000 H I]
(D] L (D] i 1
= : = [ﬂ I |
S O N L 5 O el B e N . ’_“.\
A 1 2 A 1 2 4 6 8
Number of KV—tenants Number of KV-tenants
<Throughput Get() only > <Throughput Put() only >

Iso-KVSSD has an average 2.9x higher read throughput than the baseline with negligible write

performance overhead.

SOGANG
g UNIVERSITY

I Impact of Per-namespace LSM-tree: Level Distribution

e Level distribution of where KV data is indexed in the LSM-trees.

100 i 100 [B O S
80 - ; 80 - ;
< 60f] < 60f]

E I E I # of tenants = 1
@) 40f] O 40f # of tenants =2

- : # of tenants = 4
20k | 20+ # of tenants =6 |

I I # of tenants = &

07 — 07 ——
& IS

) Vv o)
<Baseline > <Iso-KVSSD>

Per-namespace LSM-tree significantly reduces level depth at which KV data is

indexed in the LSM-tree.

SOGANG
g UNIVERSITY

I Impact of Per-namespace LSM-tree: Level Distribution

e Level distribution of where KV data is indexed in the LSM-trees.
83.8%
.

100 H"""u'i 100 [B O S
oo |
< 60f] < 60f]
E I E I # of tenants = 1
@) 40f O 40f # of tenants =2
- : # of tenants = 4
20k | 20+ # of tenants =6
I I # of tenants = 8
07 — 07 ——
& IS
) Vv o)
<Baseline > <Iso-KVSSD>

Per-namespace LSM-tree significantly reduces level depth at which KV data is

indexed in the LSM-tree.

SOGANG
g UNIVERSITY

I Impact of Per-namespace LSM-tree: Level Distribution

e Level distribution of where KV data is indexed in the LSM-trees.

100] 100 T T T T T
i : : Not reach]
80 2 80 to L, ;
< 60f - < 60f -
E I E I O #oftenants =1
@) 40f] O 40f - #oftenants=2
- : - # oftenants =4
20k i 20+ 8= #Hoftenants=6 -
I i =k~ # of tenants = 8
07 — Oi — —l— —
S S S S
%%‘5 S %c)% ,,)%c’
<Baseline > <Iso-KVSSD>

Per-namespace LSM-tree significantly reduces level depth at which KV data is

indexed in the LSM-tree.

SOGANG
g UNIVERSITY

I Impact of Per-namespace LSM-tree: # of Bloom Filter Loads

* The number of Bloom filter (BF) loads during LSM-tree search

'g2><107,“‘""""""""q
S ,
ﬂ15><107* [Baseline 3.6x fewer
[T Bl [50-KVSSD BF loads
= 7 ‘

10"+ 1
S
= 6
m 5x10°F
Gy
o L
2 e mws O OO T

1 2 4 6 8
Number of KV-tenants

Per-namespace LSM-tree significantly reduces the number of BF loads during

KV data search process.

SOGANG
g UNIVERSITY

I Conclusion

* |so-KVSSD with per-namespace LSM-tree design
* Identifies the user’s namespace information for namespace isolation.
* Manages the KV data using per-namespace LSM-tree design for performance isolation.

* Provides strict view showing only the KV data corresponding to each user’s namespace.

e Offers 2.9x higher per-tenant read throughput and 2.8x lower per-tenant read response time than the
baseline with a global-shared LSM-tree.

56

SOGANG
g UNIVERSITY

Isolating Namespace and Performance in Key-Value SSDs for
Multi-tenant Environments

Donghyun Min

DISCOS mdh38112@sogang.ac.kr ol
‘1;%‘2"LMKRKKRX

[

\

SOGANG
2

UNIVERSITY

mailto:mdh38112@sogang.ac.kr

