
DISCOS
LABORATORY

Isolating Namespace and Performance in Key-Value SSDs for
Multi-tenant Environments

Donghyun Min and Youngjae Kim
Sogang University, South Korea

1

The 13th ACM Workshop on Hot Topics In Storage and
File Systems (HotStorage’ 21, July 27-28)

Key-Value Store (KV-Store)

• Key-Value Store (KV-Store) is a type of NoSQL database.
• KV-Store uses simple Key-Value (KV) interface to store/retrieve data.
• Host-side KV-Store

• E.g., RocksDB, LevelDB, …

2

Key-Value Solid-State Drive (KVSSD)

• KVSSD runs storage engine of KV-Store on the SSD.

3

Key Value Application

Host KV-Store Storage Engine

File system

Block Layer &
Block Device Driver

Block Device
(SSD)

Program

Key-Value Solid-State Drive (KVSSD)

• KVSSD runs storage engine of KV-Store on the SSD.

4

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

Key Value Application

Host KV-Store Storage Engine

File system

Block Layer &
Block Device Driver

Block Device
(SSD)

Program

Host file system
overhead has been

reported[1].

Key-Value Solid-State Drive (KVSSD)

• KVSSD runs storage engine of KV-Store on the SSD.

5

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

Key Value Application

Host KV-Store Storage Engine

File system

Block Layer &
Block Device Driver

Block Device
(SSD)

Program

KV Device
(KVSSD)

KV Device Driver

High throughput
Low latency, WAF, RAF

KV API Library

KV

Host file system
overhead has been

reported[1].

Host file system
overhead has been

reported[1].

Key-Value Solid-State Drive (KVSSD)

• KVSSD runs storage engine of KV-Store on the SSD.

6

KV Device
(KVSSD)

KV Device Driver

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

High throughput
Low latency, WAF, RAF

KV API Library

Key Value Application

Host KV-Store Storage Engine

File system

Block Layer &
Block Device Driver

Block Device
(SSD)

Program

KV

<Log-Structured Merge-tree
(LSM-tree) based KVSSD>

• KVSSD (DATE’ 18),
• iLSM-SSD (MASCOTS’ 19),
• PinK (USENIX ATC’ 20)

LSM-tree indexer
(Append-manner)

Write-optimized

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

7

DRAM

Flash

Lvl. 0 SSTable

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

Value Log

< offset >

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

8

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

Put (key k, value v)

Value Log

< offset >

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

9

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

Put (key k, value v)

Value Log

❶ Value Log
Append

< offset >

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

10

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

❷ MemTable
Update

< key k, value offset > Put (key k, value v)

Value Log

❶ Value Log
Append

< offset >

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

11

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush BloomFilter

Meta
(Key, Offset)

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

12

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush BloomFilter

Meta
(Key, Offset)

Lvl. 1 SSTable

Lvl. 2 SSTable

SSTable

SSTable SSTable

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

13

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush

Lvl. 1 SSTable

SSTable

SSTable

SSTable SSTable

Full

Lvl. 2

MemTable

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

14

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush

Lvl. 1 SSTable SSTable

SSTable SSTable

Full

Overlapped
key range

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

15

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

MemTable

Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush

Lvl. 1 SSTable SSTable

SSTable SSTable

Full

Overlapped
key range

❹1 Read for
Compaction

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

16

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

MemTable

Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush

Lvl. 1 SSTable SSTable

SSTable SSTable

Full

Overlapped
key range

❹1 Read for
Compaction

New
SSTable

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

17

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

MemTable

Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush

Lvl. 1 SSTable SSTable

SSTable SSTable New
SSTable

Full

Overlapped
key range

❹1 Read for
Compaction

New
SSTable

Lvl. 2

❹2 Write for
Compaction

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

18

Put (key k, value v)

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

MemTable

Value Log

< offset >

❶ Value Log
Append

❷ MemTable
Update

< key k, value offset >

❸ SSTable
Flush

Lvl. 1 SSTable

SSTable SSTable New
SSTable

New
SSTable

❹2 Write for
Compaction

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

19

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

MemTable

Value Log

< offset >

Lvl. 1 SSTable

SSTable SSTable New
SSTable

Get (key k)
① MemTable

Search

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

20

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0 SSTable

MemTable

Value Log

< offset >

Lvl. 1 SSTable

SSTable SSTable New
SSTable

Get (key k)
① MemTable

Search

② SSTable
Search

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

21

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0

MemTable

Value Log

< offset >

Lvl. 1 SSTable

SSTable SSTable New
SSTable

Get (key k)
① MemTable

Search

② SSTable
Search BloomFilter

Meta
(Key, Offset)

SSTable

BF and key matching

Lvl. 2

Log-Structured Merge-tree (LSM-tree) in KVSSD

• Several KVSSDs[1, 2] are implemented based on key-value separated LSM-tree indexing structure[3].

22

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.
[2] PinK: High-speed In-storage Key-Value Store with Bounded Tails, USENIX ATC, 2020.
[3] WiscKey: Separating Keys from Values in SSD-Conscious Storage, USENIX FAST, 2016.

DRAM

Flash

Lvl. 0

MemTable

Value Log

< offset >

Lvl. 1 SSTable

SSTable SSTable New
SSTable

Get (key k)
① MemTable

Search

② SSTable
Search BloomFilter

Meta
(Key, Offset)

SSTable

BF and key matching

< value >

③ Value
Retrieval

Lvl. 2

Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support.
• Multi-tenancy is an architecture that can host multiple DB instances of tenants on a server.

23

VS.

<Single-tenant vs. Multi-tenant>

Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support.
• Multi-tenancy is an architecture that can host multiple DB instances of tenants on a server.

24

Security

Privacy

Performance

VS.

<Single-tenant vs. Multi-tenant>

Each tenant has their own
dedicated server[4].

[4] pClock: An Arrival Curve Based Approach for QoS Guarantees in Shared Storage Systems, ACM SIGMETRICS, 2007.

Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support.
• To this end, namespace isolation is supported.

25

KV

KV
KV

KV KV

KV

KV

KV

Logically
separated KV dataShared

storage <Namespace isolation>

Problems of the current LSM-Tree based KVSSD

• Problem 1: Lack multi-tenancy and namespace isolation support.
• To this end, namespace isolation is supported.

26

However, current LSM-tree based KVSSDs lack design and implementation
for namespace isolation.

<Namespace isolation>

KV

KV
KV

KV KV

KV

KV

KV

Logically
separated KV dataShared

storage

Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

27

KV

Upper level

Lower level

<Global-shared LSM-tree>

Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

28<Global-shared LSM-tree>

KV

Upper level

Lower level

Read is too slow.Read is too slow.Read is too slow.

LSM-tree
search order

Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

29

KV

Upper level

Lower level

Read is too slow.Read is too slow.Read is too slow.

Reason 1: Most tenants’
KV data will be indexed at

upper level.
LSM-tree

search order

<Global-shared LSM-tree>

Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

30

KV

Upper level

Lower level

Read is too slow.Read is too slow.Read is too slow.

LSM-tree
search order

Reason 2: During LSM-tree
search, BF loads are

performed several times.

Reason 1: Most tenants’
KV data will be indexed at

upper level.

<Global-shared LSM-tree>

Problems of the current LSM-Tree based KVSSD (Cont.)

• Problem 2: Limited per-tenant read performance
• Multiple KV data of tenants are still managed by a global-shared single LSM-tree.

31<Global-shared single LSM-tree>

KV

Upper level

Lower level

Read is too slow.Read is too slow.Read is too slow.

LSM-tree
search order

Current LSM-tree based KVSSDs have difficulty in providing the promised read performance that
storage device can provide.

Reason 2: During LSM-tree
search, BF loads are

performed several times.

Reason 1: Most tenants’
KV data will be indexed at

upper level.

Motivation Experiment

• Configuration
• iLSM-SSD[1], recent LSM-tree based KVSSD.
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• KV tenant Read Scenarios
• (1): When only tenant x’s KV data occupies a LSM-tree.
• (2): When LSM-tree is shared by tenant x’s and y’s

own KV data at the same time.

32

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

Motivation Experiment

• Configuration
• iLSM-SSD[1], recent LSM-tree based KVSSD.
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• KV tenant Read Scenarios
• (1): When only tenant x’s KV data occupies a LSM-tree.
• (2): When LSM-tree is shared by tenant x’s and y’s

own KV data at the same time.

• Result & Analysis (from the tenant x’s perspective)
• Response time: (1) << (2).

33

C
D
F
	(
%
)

0

20

40

60

80

100

Latency	(us)

1000 2000 3000 4000 5000 6000

<Response time for read>

Long response time

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

😄 😫

Motivation Experiment

• Configuration
• iLSM-SSD[1], recent LSM-tree based KVSSD.
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• KV tenant Read Scenarios
• (1): When only tenant x’s KV data occupies a LSM-tree.
• (2): When LSM-tree is shared by tenant x’s and y’s

own KV data at the same time.

• Result & Analysis (from the tenant x’s perspective)
• Response time: (1) << (2).
• Reason 1: 67% of tenant x’s KV data are indexed at L2.
• Reason 2: # of BF loads are increased by 77%.

34

C
D
F
	(
%
)

0

20

40

60

80

100

Latency	(us)

1000 2000 3000 4000 5000 6000

One	Tenant
Two	Tenants

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

<Response time for read>

Long response time

<Level of accessed data>

[1] iLSM-SSD: An Intelligent LSM-tree Based Key-Value SSD for Data Analytics, MASCOTS, 2019.

2/3 data is indexed
at higher level.

😄 😫

😄 😫

Design Goals

• Therefore, we have the following design goals for multi-tenant KVSSD.

(1) Multi-tenant KVSSD supports namespace isolation.

(2) Multi-tenant KVSSD minimizes read performance overhead for performance isolation.

35

Design Goals

• Therefore, we have the following design goals for multi-tenant KVSSD.

(1) Multi-tenant KVSSD supports namespace isolation.

(2) Multi-tenant KVSSD minimizes read performance overhead for performance isolation.

36

We propose a multi-tenant Iso-KVSSD, satisfying these two goals.

Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.

37

DRAM

Flash

MemTable

OffsetKey

Namespace
0x109

Namespace D

SSTable
Shared
Lvl. 0

⋮ ⋮ ⋮ ⋮

Segregated
Lvl. 1

Lvl. 2, 3, ..

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta

⋮
Flash Memory

Pool

Pooled
allocation

0xF23

Namespace A

Get (key k, namespace ns)

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace DNamespace A

Put (key k, value v, namespace ns) via NSID region of NVMe command

Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.

38

DRAM

Flash

MemTable

OffsetKey

Namespace
0x109

Namespace D

SSTable
Shared
Lvl. 0

⋮ ⋮ ⋮ ⋮

Segregated
Lvl. 1

Lvl. 2, 3, ..

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta

⋮
Flash Memory

Pool

Pooled
allocation

0xF23

Namespace A

Get (key k, namespace ns)

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace DNamespace A

Put (key k, value v, namespace ns) via NSID region of NVMe command

Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.

39

MemTable

OffsetKey

Namespace
0x109

Namespace D

⋮
Flash Memory

Pool

0xF23

Namespace A

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command

Pooled
allocation

DRAM

FlashSSTable
Shared
Lvl. 0

⋮ ⋮ ⋮ ⋮

Segregated
Lvl. 1

Lvl. 2, 3, ..

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace DNamespace A

Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.

40

Only few KV data
are indexed at
shared regions.

MemTable provisioning per-namespace
requires additional DRAM space.

MemTable

OffsetKey

Namespace
0x109

Namespace D

⋮
Flash Memory

Pool

0xF23

Namespace A

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command

Pooled
allocation

DRAM

FlashSSTable
Shared
Lvl. 0

⋮ ⋮ ⋮ ⋮

Segregated
Lvl. 1

Lvl. 2, 3, ..

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace DNamespace A

Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.

41

MemTable

OffsetKey

Namespace
0x109

Namespace D

⋮
Flash Memory

Pool

0xF23

Namespace A

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command

MemTable provisioning per-namespace
requires additional DRAM space.

It prevents KV data from
being indexed at upper
level of LSM-tree.

Pooled
allocation

DRAM

FlashSSTable
Shared
Lvl. 0

⋮ ⋮ ⋮ ⋮

Segregated
Lvl. 1

Lvl. 2, 3, ..

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace DNamespace A

Only few KV data
are indexed at
shared regions.

Per-namespace dedicated LSM-tree

• Iso-KVSSD employs per-namespace dedicated LSM-tree design.

42

MemTable provisioning per-namespace
requires additional DRAM space.

It prevents KV data from
being indexed at upper
level of LSM-tree.

MemTable

OffsetKey

Namespace
0x109

Namespace D

⋮
Flash Memory

Pool

0xF23

Namespace A

Get (key k, namespace ns) Put (key k, value v, namespace ns) via NSID region of NVMe command

Pooled
allocation

DRAM

FlashSSTable
Shared
Lvl. 0

⋮ ⋮ ⋮ ⋮

Segregated
Lvl. 1

Lvl. 2, 3, ..

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace DNamespace A

• Iso-KVSSD controls access based on user’s namespace information.
• Per-namespace LSM-tree design reduces KV data’s access latency.

Only few KV data
are indexed at
shared regions.

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

43

Shared
Lvl. 0

L G
D Q

B K
P E

⋮ ⋮ ⋮ ⋮

C A Z A B
C D

Segregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

DRAM

Flash

New SSTableVictim SSTable

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

44

New SSTableVictim SSTable

① Lvl.0 Victim
SSTable Load

⋮ ⋮ ⋮ ⋮

CSegregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

A Z A B
C D

KV data is isolated
during existing

background compaction.

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

45

New SSTableVictim SSTable

① Lvl.0 Victim
SSTable Load

L G
D Q

B K
P E

Lvl.0 Victim
SSTable

② Key
Range
Check

B ~ L G ~ P

D ~ K Q

⋮ ⋮ ⋮ ⋮

CSegregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

A Z A B
C D

KV data is isolated
during existing

background compaction.

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

46

New SSTableVictim SSTable

③ Lvl.1 Victim
SSTable Load

C A Z

Lvl.1 Victim
SSTable

② Key
Range
Check

⋮ ⋮ ⋮ ⋮

CSegregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

Shared
Lvl. 0

L G
D Q

B K
P E

① Lvl.0 Victim
SSTable LoadDRAM

Flash

A Z A B
C D

L G
D Q

B K
P E

Lvl.0 Victim
SSTable

B ~ L G ~ P

D ~ K Q

KV data is isolated
during existing

background compaction.

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

47

New SSTableVictim SSTable

③ Lvl.1 Victim
SSTable Load

① Lvl.0 Victim
SSTable Load

B
E

C
L

A G
P Z

D K Q

④Compaction
per namespace

⋮ ⋮ ⋮ ⋮

CSegregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

A Z A B
C D

C A Z

Lvl.1 Victim
SSTable

② Key
Range
Check

L G
D Q

B K
P E

Lvl.0 Victim
SSTable

B ~ L G ~ P

D ~ K Q

KV data is isolated
during existing

background compaction.

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

48

New SSTableVictim SSTable

③ Lvl.1 Victim
SSTable Load

① Lvl.0 Victim
SSTable Load

④Compaction
per namespace

⋮ ⋮ ⋮ ⋮

C B A Z A BA G
C DE

QD KSegregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

C
L P Z

⑤ New
SSTable
Write

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

C A Z

Lvl.1 Victim
SSTable

② Key
Range
Check

L G
D Q

B K
P E

Lvl.0 Victim
SSTable

B ~ L G ~ P

D ~ K Q

B
E

C
L

A G
P Z

D K QKV data is isolated
during existing

background compaction.

Namespace Isolation Mechanism

• Namespace Isolation Mechanism segregates KV data into per-namespace LSM-trees.

49

New SSTableVictim SSTable

③ Lvl.1 Victim
SSTable Load

① Lvl.0 Victim
SSTable Load

④Compaction
per namespace

⋮ ⋮ ⋮ ⋮

C B
E

Segregated
Lvl. 1

Lvl. 2, 3, ..
LSM-tree 4LSM-tree 3LSM-tree 2LSM-tree 1

Namespace 2 Namespace 3 Namespace 4Namespace 1

C
L

⑤ New
SSTable
Write

Shared
Lvl. 0

L G
D Q

B K
P E

DRAM

Flash

C A Z

Lvl.1 Victim
SSTable

② Key
Range
Check

L G
D Q

B K
P E

Lvl.0 Victim
SSTable

B ~ L G ~ P

D ~ K Q

B
E

C
L

A G
P Z

D K Q

A Z A BA G
C D

QD K
P Z

Namespace Isolation mechanism substantially segregates KV data without
perceivable overhead.

KV data is isolated
during existing

background compaction.

Experimental Setup

• Prototyped Iso-KVSSD on FPGA-based Cosmos+ OpenSSD.
• 1TB NAND memory, 1GB DDR3 DRAM, ARM Cortex-A9 processors.

• Configuration
• Key size: 8B, Value size: 1KB.
• # of KV requests issued (per tenant): 1M.

• Workloads
• Put() or Get() only synthetic workloads.

• Comparison
• Baseline: iLSM-SSD with global-shared LSM-tree.
• Iso-KVSSD: iLSM-SSD with per-namespace LSM-tree.

50

Throughput Comparison

51

Baseline
Iso-KVSSD

P
er
-T
en
an
t	
T
h
ro
u
g
h
p
u
t	
(K
IO
P
S
)

0

1000

2000

3000

4000

Number	of	KV-tenants

1 2 4 6 8

Baseline
Iso-KVSSD

P
er
-T
en
an
t	
T
h
ro
u
g
h
p
u
t	
(K

IO
P
S
)

0

100

200

300

400

500

Number	of	KV-tenants

1 2 4 6 8

<Throughput Put() only ><Throughput Get() only >

less than 1%
overhead

Iso-KVSSD has an average 2.9x higher read throughput than the baseline with negligible write
performance overhead.

2.9x
improvement

1.1x

1.9x
2.3x

• Level distribution of where KV data is indexed in the LSM-trees.

Impact of Per-namespace LSM-tree: Level Distribution

52

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

#	of	tenants	=	1
#	of	tenants	=	2
#	of	tenants	=	4
#	of	tenants	=	6
#	of	tenants	=	8

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

<Baseline > <Iso-KVSSD>

Per-namespace LSM-tree significantly reduces level depth at which KV data is
indexed in the LSM-tree.

• Level distribution of where KV data is indexed in the LSM-trees.

Impact of Per-namespace LSM-tree: Level Distribution

53

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

#	of	tenants	=	1
#	of	tenants	=	2
#	of	tenants	=	4
#	of	tenants	=	6
#	of	tenants	=	8

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

83.8%

26.5%

Up to
70.1%
(in L2)

<Baseline > <Iso-KVSSD>

Per-namespace LSM-tree significantly reduces level depth at which KV data is
indexed in the LSM-tree.

• Level distribution of where KV data is indexed in the LSM-trees.

Impact of Per-namespace LSM-tree: Level Distribution

54

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

#	of	tenants	=	1
#	of	tenants	=	2
#	of	tenants	=	4
#	of	tenants	=	6
#	of	tenants	=	8

C
D
F
	(
%
)

0

20

40

60

80

100

M
em
T

Lv
.0
	S
ST

Lv
.1
	S
ST

Lv
.2
	S
ST

Lv
.3
	S
ST

Not reach
to L2

<Baseline > <Iso-KVSSD>

Per-namespace LSM-tree significantly reduces level depth at which KV data is
indexed in the LSM-tree.

• The number of Bloom filter (BF) loads during LSM-tree search

Impact of Per-namespace LSM-tree: # of Bloom Filter Loads

55

Baseline

Iso-KVSSD

#
	o
f	
B
lo
o
m
	F
il
te
r	
L
o
a
d

0

5×10
6

10
7

1.5×10
7

2×10
7

Number	of	KV-tenants

1 2 4 6 8

3.6x fewer
BF loads

Per-namespace LSM-tree significantly reduces the number of BF loads during
KV data search process.

Conclusion

• Iso-KVSSD with per-namespace LSM-tree design
• Identifies the user’s namespace information for namespace isolation.
• Manages the KV data using per-namespace LSM-tree design for performance isolation.

• Provides strict view showing only the KV data corresponding to each user’s namespace.
• Offers 2.9x higher per-tenant read throughput and 2.8x lower per-tenant read response time than the

baseline with a global-shared LSM-tree.

56

DISCOS
LABORATORY

Isolating Namespace and Performance in Key-Value SSDs for
Multi-tenant Environments

Donghyun Min
mdh38112@sogang.ac.kr

57

mailto:mdh38112@sogang.ac.kr

