How the Common Retention Acceleration Method of 3D NAND Flash Memory Goes Wrong?

Qiao Li, Min Ye, Tei-Wei Kuo, Chun Jason Xue
City University of Hong Kong
National Taiwan University
Outline

• Flash Retention Acceleration
• How 3D Flash Retention Acceleration Goes Wrong?
 – Evaluation Setup
 – New Findings
• Real Long-Retention Errors and Discussions
• Conclusions
3D NAND Flash

- 3D NAND flash is prevailing
- More vertical layers for higher density
Flash Retention Acceleration

• Retention error is the main error source in NAND flash
 – Caused by charge leakage over retention time

• High temperatures accelerate retention effects
 – High temperatures increase the mobility of electron
Flash Retention Acceleration

• Arrhenius’ law
 – Baking flash chips at a high temperature can achieve the equivalent retention effect to that of a low temperature

\[
AF = \frac{t_1}{t_2} = \exp\left(\frac{E_a}{k} \times \frac{1}{T_1} - \frac{1}{T_2}\right)
\]

<table>
<thead>
<tr>
<th>High temperature (°C)</th>
<th>Baking hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>97.65</td>
</tr>
<tr>
<td>80</td>
<td>11.16</td>
</tr>
<tr>
<td>100</td>
<td>1.61</td>
</tr>
<tr>
<td>120</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Evaluation Setup

• YEESTOR 9083 flash testing platform
• Four 3D flash chips
 – 3 TLC and 1 QLC
 – 2 FG and 2 CT
• Room temperature for one year
 – Air condition at 25°C
• High temperature baking
New Finding 1

• The errors through baking with high temperatures significantly **underestimate** the real long-retention errors.

 – 3D NAND flash memories have worse retention characteristics.
New Finding 2

• The difference between the real and estimated retention errors on 3D FG flash is smaller than that of 3D CT flash.

 – CT flash memories have different characteristics from FG flash memories.

![Graph showing bit error rates for 25°C, 60°C, 80°C, 100°C, and 120°C for Charge trap flash and Floating gate flash.](Image)
New Finding 3

• The difference between the real and estimated retention errors changes with the number of P/E cycles.
 – P/E operations introduce oxide degradation and cell damage.
Read Voltages and Pages of TLC flash

• Each TLC cell stores three bits
• 7 read reference voltages to differentiate 8 states

Each TLC cell stores three bits

7 read reference voltages to differentiate 8 states
New Finding 4 - TLC

• The temperature affects the RBER variations among read voltages, as well as pages.
 – Different voltage states suffer from retention errors in different degrees.

![Charge trap flash](image1)

![Floating gate flash](image2)
New Finding 4 - QLC

• The temperature affects the RBER variations among read voltages, as well as pages.

 – Different voltage states suffer from retention errors in different degrees.
New Finding 5

• The temperature affects the RBER variations among wordlines.
 – Variations among layers/wordlines come from the physical structure of 3D flash blocks.

1 year at 25°C

11.2 hours at 80°C
Conclusions of New Findings

• The error behaviors at high temperatures are different from that of the room temperature
 – Underestimation
 – Flash type (floating-gate and charge-trap)
 – Number of P/E
 – Variations among pages
 – Variations among wordlines/layers
Real Long-Retention Errors

- The error rates introduced by higher voltage states are higher.
- CT flash has much higher error rates.

Charge trap flash

Floating gate flash
Discussions

• Characterization of retention errors
 – New retention characterization method is required for 3D flash.

• Influence on the reliability
 – Inaccurate retention characterization may introduce data loss.

• Optimizations of the reliability
 – Revisions are required for current reliability optimization methods.
Conclusions

• Retention acceleration through baking is widely applied.
• A one-year retention evaluations on real 3D NAND flash chips.
• The real error behaviors at low temperatures are different from that through baking with high temperatures.
• We provide several insights to explore the long retention errors, along with real long-retention errors on 3D flash memory.
How the Common Retention Acceleration Method of 3D NAND Flash Memory Goes Wrong?

Qiao Li, Min Ye, Tei-Wei Kuo, Chun Jason Xue