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Why Zoned Storage
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Why Rocks in Zoned Storage

The Downside
Add little:
• complexity in specification
• overhead in implementation

The Upside
Store small/variable-size data efficiently:
• compressed pages
• log records



Potential Specification
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Potential Implementation

Zoned Block Namespace (ZBNS) Physical Locations in Flash
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😊😊 Per-zone map, no per-block map.

☹ Logical block size < flash page size
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DeviceDevice

Potential Implementation

Zoned Rock Namespace (ZRNS)
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😊😊 One page-size NVRAM buffer per active zone

😊😊 No per-block map

😊😊 One command can read/write many blocks

😊😊 One page-size NVRAM buffer per active zone

😊😊 No per-rock map

😊😊 One command can read/write many rocks

😊😊 Can support rocks as small as 16 B 

Zoned Block Namespace (ZBNS)

flash

NVRAM



Why Rocks in Zoned Storage

The Downside
Adds little:
• complexity in specification
• overhead in implementation

The Upside
Store small/variable-size data efficiently:
• compressed pages
• log records
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Transparent Compression
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cluster = 4 pages

pages 0 1 2 3

Unit of garbage = block
e.g., WAFL®, Btrfs, F2FS

Unit of garbage = rock
e.g., CASL®

1. Block-Aligned Clusters 2. Soft Rocks Over Blocks
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Transparent Compression
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Unit of garbage = rock
e.g., CASL®

2. Soft Rocks Over Blocks
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😊😊 Avoid reading extra bytes from device.

😊😊 Avoid redundant checksums on rocks and blocks.

😊😊 Offload to device: rock-level copy to optimize GC.  

3. Device-Level Rocks
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Flash Device

Logging Change Records

1. Rewrite Last Block 2. Stage in NVRAM
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☹ Requires extension ZRWA, not yet standard.

☹ Can have at most 1 write pending to a block.

☹ Amplifies bytes transferred.

☹ Explicit staging adds cost and complexity.

☹ Need for separate replication makes it worse.
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Logging Change Records

3. Device-Level Rocks 2. Stage in NVRAM

Flash Device
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😊😊 Direct logging without (explicit) staging.

😊😊 Concurrent appends by multiple threads.

😊😊 As fast as explicit staging in PCIe-attached NVRAM.
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☹ Explicit staging adds cost and complexity.

☹ Need for separate replication makes it worse.



ZKVNS Device

Future Directions
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Conclusions

1. ZNS has the potential to become a dominant abstraction:
a. Helps avoid an un-necessary translation.
b. Supports systems with different data layouts.

2. ZNS can be extended to support rocks (ZRNS) with little cost:
a. Specification: command set similar to blocks.
b. Implementation: needs same (small) amount of internal NVRAM.

3. ZRNS provides significant benefits:
a. Store small/variable size data efficiently: inodes, small files, compressed data.
b. Append log records concurrently without explicit staging in NVRAM.

4. ZRNS enables further extensions:
a. Zoned key-value records for offloading merging in LSM Trees.
b. Other domain-specific formats and functions?

Please send questions/suggestions to umesh at alum.mit.edu.
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