
From Blocks to Rocks:
A Natural Extension of Zoned Namespaces

Umesh Maheshwari
Chiku Research

HotStorage 2021

1 2 3 4 5 6 70

Storage Abstractions

Conventional Block Storage Zoned Block Storage

1

2

1 2 3 4 5 6 70 1 2 3 4 5 6 70

2’ 5’1’ 4’3’ 6’

Zoned Rock Storage

Why Zoned Storage

Host
key-value API

key
↓

conv. block

Conventional
Block Device

conv. block
↓

flash location

flash

Host
key-value API

key
↓

zoned block

Zoned
Block Device

zoned block
↓

flash location

flash

Host
key-value API

conv. block
↓

zoned block

Zoned
Block Device

zoned block
↓

flash location

flash

key
↓

conv. block

IO
 am

pli
fic

ati
on

Why Rocks in Zoned Storage

The Downside
Add little:
• complexity in specification
• overhead in implementation

The Upside
Store small/variable-size data efficiently:
• compressed pages
• log records

Potential Specification

0 1 2 3 …

0 1 2 3 …

0 1 2 3 …

Zoned Block Namespace (ZBNS)

0 1 2

0 1

3

0K

30K

60KZo
ne

 S
ta

rt
 L

BA

Zoned Rock Namespace (ZRNS)

0 MB

120 MB

240 MB

Rock Offset = 9003 B

Zo
ne

 S
ta

rt
 O

ffs
et

Rock Address = Zone Start Offset + Rock Offset = 240M + 9003

zone 0

zone 1

zone 2

Rock Address = (Zone Number, Rock Offset) = (2, 9003)

Block Number = 3

Block Address = Zone Start LBA + Block Number = 60K+3

Potential Implementation

Zoned Block Namespace (ZBNS) Physical Locations in Flash

page 0 …

page 1 …

page 0 page 1 …

page 0

flash erase unit 0

flash erase unit 1

flash erase unit 2

page 1

😊😊 Per-zone map, no per-block map.

☹ Logical block size < flash page size

0 1 2 3 …

0 1 2 3 …

0 1 2 3 …0 1 2

0 1

3

0K

30K

60KZo
ne

 S
ta

rt
 L

BA

8 or 16 KiB4 KiB

DeviceDevice

Potential Implementation

Zoned Rock Namespace (ZRNS)

page 6 page 7 …

NVRAM

page 7 …

flash

page 7 page 7page 6

😊😊 One page-size NVRAM buffer per active zone

😊😊 No per-block map

😊😊 One command can read/write many blocks

😊😊 One page-size NVRAM buffer per active zone

😊😊 No per-rock map

😊😊 One command can read/write many rocks

😊😊 Can support rocks as small as 16 B

Zoned Block Namespace (ZBNS)

flash

NVRAM

Why Rocks in Zoned Storage

The Downside
Adds little:
• complexity in specification
• overhead in implementation

The Upside
Store small/variable-size data efficiently:
• compressed pages
• log records

0 1 2 3 4 5 6 70blocks 1 2 3 4 5 6 7

Transparent Compression

0 1 2 3 5 6 7

cluster = 4 pages

pages 0 1 2 3

Unit of garbage = block
e.g., WAFL®, Btrfs, F2FS

Unit of garbage = rock
e.g., CASL®

1. Block-Aligned Clusters 2. Soft Rocks Over Blocks

4 5’ 6 74 5 6 74 5’

blocks

page

read-modify-write

0 1 2 3 4 5 6 7

Transparent Compression

0 1 2 3

Unit of garbage = rock
e.g., CASL®

2. Soft Rocks Over Blocks

5 6 74 5’ 0 1 2 3 5 6 7 4 5’

😊😊 Avoid reading extra bytes from device.

😊😊 Avoid redundant checksums on rocks and blocks.

😊😊 Offload to device: rock-level copy to optimize GC.

3. Device-Level Rocks

blocks

page

rocks

Flash Device

Logging Change Records

1. Rewrite Last Block 2. Stage in NVRAM

block 1block 0

Host

Thread1 DRAM

Flash Device

block 1block 0

Host

NVRAM

☹ Requires extension ZRWA, not yet standard.

☹ Can have at most 1 write pending to a block.

☹ Amplifies bytes transferred.

☹ Explicit staging adds cost and complexity.

☹ Need for separate replication makes it worse.

explicit
staging

implicit
staging

Logging Change Records

3. Device-Level Rocks 2. Stage in NVRAM

Flash Device

block 1block 0

Host

NVRAM

Flash Device

Host

Thread2Thread1 Thread4Thread3

😊😊 Direct logging without (explicit) staging.

😊😊 Concurrent appends by multiple threads.

😊😊 As fast as explicit staging in PCIe-attached NVRAM.

explicit
staging

implicit
staging

explicit
staging

implicit
staging

☹ Explicit staging adds cost and complexity.

☹ Need for separate replication makes it worse.

ZKVNS Device

Future Directions

Host

Logger

ZRNS Device

zoned rock
↓

flash location

flash

FS/DBMS

Host

conv. block
↓

zoned rock

ZRNS Device

zoned rock
↓

flash location

flash

conv. DBMS

1. Direct Logging 2. Transparent Compression

Host

zoned key
↓

zoned rock

zoned rock
↓

flash location

flash

LSM Tree

3. Zoned KV Namespace
(aka SSTables)

compression
zone compaction
key lookup within zone

no explicit
staging

merge policy

Conclusions

1. ZNS has the potential to become a dominant abstraction:
a. Helps avoid an un-necessary translation.
b. Supports systems with different data layouts.

2. ZNS can be extended to support rocks (ZRNS) with little cost:
a. Specification: command set similar to blocks.
b. Implementation: needs same (small) amount of internal NVRAM.

3. ZRNS provides significant benefits:
a. Store small/variable size data efficiently: inodes, small files, compressed data.
b. Append log records concurrently without explicit staging in NVRAM.

4. ZRNS enables further extensions:
a. Zoned key-value records for offloading merging in LSM Trees.
b. Other domain-specific formats and functions?

Please send questions/suggestions to umesh at alum.mit.edu.

	From Blocks to Rocks:�A Natural Extension of Zoned Namespaces
	Storage Abstractions
	Why Zoned Storage
	Why Rocks in Zoned Storage
	Potential Specification
	Potential Implementation
	Potential Implementation
	Why Rocks in Zoned Storage
	Transparent Compression
	Transparent Compression
	Logging Change Records
	Logging Change Records
	Future Directions
	Conclusions

