
CRDTs for truly concurrent
file systems

Romain Vaillant, Dimitrios Vasilas, Marc Shapiro,

Thuy Linh Nguyen

1

File systems
● A widely used solution for data

sharing

● No longer limited to local uses

● Compatibility with legacy

applications that expect POSIX

2

What is expected
for these services

● Low response time.

● Always available.

● Scalable

3

The other side of
the medal

● Name conflicts.

● Divergent renames.

● Cyclic renames.

● Deletion of inodes.

● Content conflicts.

4

Alice and Bob are in a hurry.

 Alice$ vim shared/report.md

In the meantime...

 Bob$ emacs shared/report.md

What should happen ?

5

What existing systems are doing *

6

Cloud services Strategy

Google Drive Rename files (divergent)

One Drive Rename files
(consistent)

Dropbox Rename files
(consistent)

* Design and Implementation of a Concurrency Benchmark Tool for Cloud Storage Systems Weiwei Cai et al.

We can rename files!

$ ls /shared/
$ “report.md - (1)” “report.md - (2)”

You need to know how the system works to predict its
behavior...

...and that the application didn’t create any
conflicting files.

7

What we would like
to happen

● A simple mental model.

● No after-the-fact

corrections.

● Prevent applications from

breaking.

8

Alice and Bob try ElmerFS.

 Alice$ vim shared/report.md // Bob$ emacs shared/report.md

Leads to
Alice$ ls /shared/
Alice$ “report.md” “report.md:Bob”

Bob$ ls /shared/
Bob$ “report.md” “report.md:Alice”

9

CRDTs are a perfect fit for that!

● Independant and concurrent updates without coordination.

Update can be accepted in any order, the system will always converge.

● Strong eventual consistency.

 The strongest form of eventual consistency

● Optimistic Replication

Accept the operation locally, apply it to other nodes later

10

A simple CRDT: A Set.

 {0, 3}
ADD(4)

REMOVE(4)

{0, 3}

{0, 3, 4}

 {0, 3}

ADD(4)

REMOVE(4)

{0, 4}

{0, 3, 4}

11

Adds Win: Removes Win:

We can use a simple set right ?

{ …, (name: “report.md”, ino: 0),
 (name: “report.md”, ino: 1), … }

We can represent directories as a set...

But this does not solve the problem at all!

Convergence does not mean correctness!

12

Track the operation origin

{ …, (name: “report.md”, ino: 0, viewId: Alice),
 (name: “report.md”, ino: 1, viewId: Bob), … }

We need to identify the origin of the operation:

Every operation has a view ID associated with it.

13

Interfacing with Bob’s obliviousness.

{…,(name: “report.md”, ino: 0, viewId: Bob), …}

What the system sees:

What the system shows (implicit/explicit):

Bob$ ls shared/report.md
 $ report.md

Bob$ ls shared/report.md:Bob
 $ report.md

14

The other side of
the medal

● Name conflicts.

● Divergent renames.

● Cyclic renames.

● Deletion of inodes.

● Content conflicts.

15

Divergent renames

/

E E1

/

E E2

/

E2E1

We created a reference!
16

Reference counting doesn’t work

● A rename operation only moves references.

● Uniqueness and transactions

(parent_ino, ino, name, view_id) is unique, we keep them in a CRDT set.

● Use Last Writer Win semantic for folders

 To elect only one reference if POSIX compliance is necessary.

17

Divergent renames

/

E2E1

{ (parent: “/”, name: “E1”, ino: 0, viewId: Bob),
 (parent: “/”, name: “E2”, ino: 0, viewId: Alice) }

{ (parent: “/”, name: “E”, ino: 0, viewId: Bob) }

E

18

The other side of
the medal

● Name conflicts.

● Divergent renames.

● Cyclic renames.

● Deletion of inodes.

● Content conflicts.

19

Is this all theory ? - AntidoteDB

- ElmerFS

20

https://github.com/AntidoteDB/antidote
https://github.com/scality/elmerfs

Lesson learned.

● CRDT ensures that your system will converge

But are not aware of the invariant of the application.

● The application designer must think on how operations interact

To use the CRDTs properties to their advantages.

● The just right consistency.

Only use synchronisation when strictly necessary.

21

Takeaways

● CRDTs properties are a good fit for geo-distributed file systems.

● Some problems remains: cycles, space reclamation...

● Experiments needed, on the interface and performance tradeoffs.

22

Thank You!

23

